Personal profile

Biography

Dr. Rahmati’s research interest lies in the field of turbomachinery for both conventional and renewable power and propulsion. Dr. Rahmati earned a PhD from UCL for developing innovative new viscous inverse methods for turbomachinery blade design. These methods enable the direct and efficient computation of turbomachinery blade geometry instead of time-consuming optimization or trial-and-error approaches, making them highly suitable for industrial applications.  He has conducted research in the field of wet renewable energy and played a key role in developing WRASPA, a novel wave energy converter model that harnesses the power of sea waves to generate electricity. Dr. Rahmati played a crucial role in designing and conducting experimental studies of the device at three various wave tanks at Manchester University, Edinburgh University, and Lancaster University. His research at the Rolls-Royce Centre at Oxford University led to the development of a pioneering efficient computational tool, which enables to carry out the aeroelasticity analysis in multi-stage turbomachines with no ambiguity. This new tool is used in industry to improve the aeroelastic performance of compressors and turbine blades used in gas turbines and wind turbine blades. The originality and impact of Dr Rahmati’s research have been acknowledged by several funding bodies, including EPSRC, which awarded grants for pioneering studies on the mechanism of instabilities in modern `high-lift’ Low-Pressure turbines used in aero-engines of modern passenger aircraft as well as large wind turbine blades.

Research interests

  • Developing innovative new design methods for turbomachinery blade 
  • Designing and conducting experimental studies of novel renewable energy devices 
  • Developing efficient computational tools for aeroelasticity analysis in multi-stage turbomachines
  • Improving the aeroelastic performance of compressor and turbine blades used in gas turbines and wind turbine blades
  •  Development of novel SAW ( Surface Acoustic waves) for fluid particle interactions studies  

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 7 - Affordable and Clean Energy
  • SDG 9 - Industry, Innovation, and Infrastructure

Education/Academic qualification

Mechanical Engineering, PhD, UCL, University College London

Fingerprint

Dive into the research topics where Mohammad Rahmati is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles