TY - JOUR
T1 - Θ-Net: A Deep Neural Network Architecture for the Resolution Enhancement of Phase-Modulated Optical Micrographs In Silico
AU - Kaderuppan, Shiraz S.
AU - Sharma, Anurag
AU - Saifuddin, Muhammad Ramadan
AU - Wong, Wai Leong Eugene
AU - Woo, Wai Lok
PY - 2024/9/26
Y1 - 2024/9/26
N2 - Optical microscopy is widely regarded to be an indispensable tool in healthcare and manufacturing quality control processes, although its inability to resolve structures separated by a lateral distance under ~200 nm has culminated in the emergence of a new field named fluorescence nanoscopy, while this too is prone to several caveats (namely phototoxicity, interference caused by exogenous probes and cost). In this regard, we present a triplet string of concatenated O-Net (‘bead’) architectures (termed ‘Θ-Net’ in the present study) as a cost-efficient and non-invasive approach to enhancing the resolution of non-fluorescent phase-modulated optical microscopical images in silico. The quality of the afore-mentioned enhanced resolution (ER) images was compared with that obtained via other popular frameworks (such as ANNA-PALM, BSRGAN and 3D RCAN), with the Θ-Net-generated ER images depicting an increased level of detail (unlike previous DNNs). In addition, the use of cross-domain (transfer) learning to enhance the capabilities of models trained on differential interference contrast (DIC) datasets [where phasic variations are not as prominently manifested as amplitude/intensity differences in the individual pixels unlike phase-contrast microscopy (PCM)] has resulted in the Θ-Net-generated images closely approximating that of the expected (ground truth) images for both the DIC and PCM datasets. This thus demonstrates the viability of our current Θ-Net architecture in attaining highly resolved images under poor signal-to-noise ratios while eliminating the need for a priori PSF and OTF information, thereby potentially impacting several engineering fronts (particularly biomedical imaging and sensing, precision engineering and optical metrology).
AB - Optical microscopy is widely regarded to be an indispensable tool in healthcare and manufacturing quality control processes, although its inability to resolve structures separated by a lateral distance under ~200 nm has culminated in the emergence of a new field named fluorescence nanoscopy, while this too is prone to several caveats (namely phototoxicity, interference caused by exogenous probes and cost). In this regard, we present a triplet string of concatenated O-Net (‘bead’) architectures (termed ‘Θ-Net’ in the present study) as a cost-efficient and non-invasive approach to enhancing the resolution of non-fluorescent phase-modulated optical microscopical images in silico. The quality of the afore-mentioned enhanced resolution (ER) images was compared with that obtained via other popular frameworks (such as ANNA-PALM, BSRGAN and 3D RCAN), with the Θ-Net-generated ER images depicting an increased level of detail (unlike previous DNNs). In addition, the use of cross-domain (transfer) learning to enhance the capabilities of models trained on differential interference contrast (DIC) datasets [where phasic variations are not as prominently manifested as amplitude/intensity differences in the individual pixels unlike phase-contrast microscopy (PCM)] has resulted in the Θ-Net-generated images closely approximating that of the expected (ground truth) images for both the DIC and PCM datasets. This thus demonstrates the viability of our current Θ-Net architecture in attaining highly resolved images under poor signal-to-noise ratios while eliminating the need for a priori PSF and OTF information, thereby potentially impacting several engineering fronts (particularly biomedical imaging and sensing, precision engineering and optical metrology).
KW - computational phase-modulated nanoscopy
KW - biomedical imaging
KW - image denoising
KW - deep neural networks
KW - label-free optical imaging
UR - http://www.scopus.com/inward/record.url?scp=85206432140&partnerID=8YFLogxK
U2 - 10.3390/s24196248
DO - 10.3390/s24196248
M3 - Article
SN - 1424-3210
VL - 24
JO - Sensors
JF - Sensors
IS - 19
M1 - 6248
ER -