Abstract
Efficient car shape design is a challenging problem in both the automotive industry and the computer animation/games industry. In this paper, we present a system to reconstruct the 3D car shape from a single 2D sketch image. To learn the correlation between 2D sketches and 3D cars, we propose a Variational Autoencoder deep neural network that takes a 2D sketch and generates a set of multiview depth & mask images, which are more effective representation comparing to 3D mesh, and can be combined to form the 3D car shape. To ensure the volume and diversity of the training data, we propose a feature-preserving car mesh augmentation pipeline for data augmentation. Since deep learning has limited capacity to reconstruct fine-detail features, we propose a lazy learning approach that constructs a small subspace based on a few relevant car samples in the database. Due to the small size of such a subspace, fine details can be represented effectively with a small number of parameters. With a low-cost optimization process, a high-quality car with detailed features is created. Experimental results show that the system performs consistently to create highly realistic cars of substantially different shape and topology, with a very low computational cost.
Original language | English |
---|---|
Title of host publication | Proceedings - MIG 2019: ACM Conference on Motion, Interaction, and Games |
Subtitle of host publication | Newcastle upon Tyne, England, October 28-30, 2019 |
Editors | Hubert P. H. Shum, Edmond S. L. Ho, Marie-Paule Cani, Tiberiu Popa, Daniel Holden, He Wang |
Place of Publication | New York |
Publisher | ACM |
ISBN (Electronic) | 9781450369947 |
DOIs | |
Publication status | Published - 28 Oct 2019 |
Event | MIG 2019: 12th annual ACM/SIGGRAPH conference on Motion, Interaction and Games - Northumbria University, Newcastle upon Tyne, United Kingdom Duration: 28 Oct 2019 → 30 Oct 2019 http://www.mig2019.website/index.html |
Conference
Conference | MIG 2019 |
---|---|
Country/Territory | United Kingdom |
City | Newcastle upon Tyne |
Period | 28/10/19 → 30/10/19 |
Internet address |
Keywords
- Deep Learning
- Lazy Learning
- 3D Reconstruction
- Sketch-based Interface
- Car