A Case for Electron-Astrophysics

Daniel Verscharen*, Robert T. Wicks, Olga Alexandrova, Roberto Bruno, David Burgess, Christopher H.K. Chen, Raffaella D’Amicis, Johan De Keyser, Thierry Dudok de Wit, Luca Franci, Jiansen He, Pierre Henri, Satoshi Kasahara, Yuri Khotyaintsev, Kristopher G. Klein, Benoit Lavraud, Bennett A. Maruca, Milan Maksimovic, Ferdinand Plaschke, Stefaan PoedtsChristopher S. Reynolds, Owen Roberts, Fouad Sahraoui, Shinji Saito, Chadi S. Salem, Joachim Saur, Sergio Servidio, Julia E. Stawarz, Štěpán Štverák, Daniel Told

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)
37 Downloads (Pure)


The smallest characteristic scales, at which electron dynamics determines the plasma behaviour, are the next frontier in space and astrophysical plasma research. The analysis of astrophysical processes at these scales lies at the heart of the research theme of electron-astrophysics. Electron scales are the ultimate bottleneck for dissipation of plasma turbulence, which is a fundamental process not understood in the electron-kinetic regime. In addition, plasma electrons often play an important role for the spatial transfer of thermal energy due to the high heat flux associated with their velocity distribution. The regulation of this electron heat flux is likewise not understood. By focussing on these and other fundamental electron processes, the research theme of electron-astrophysics links outstanding science questions of great importance to the fields of space physics, astrophysics, and laboratory plasma physics. In this White Paper, submitted to ESA in response to the Voyage 2050 call, we review a selection of these outstanding questions, discuss their importance, and present a roadmap for answering them through novel space-mission concepts.

Original languageEnglish
Pages (from-to)473–519
Number of pages47
JournalExperimental Astronomy
Issue number2
Early online date11 Jun 2021
Publication statusPublished - 1 Dec 2022


Dive into the research topics of 'A Case for Electron-Astrophysics'. Together they form a unique fingerprint.

Cite this