Abstract
In the current study a high fidelity analysis approach is used to predict the failure process of notched composite structures. Discrete cracking is explicitly modelled by incorporating cohesive interface elements along potential failure paths. These elements form an interconnected network to account for the interaction between interlaminar and intralaminar failure modes. Finite element models of these configurations were created in the commercial analysis software ABAQUS and a user defined material subroutine (UMAT) was used to describe the behaviour of the cohesive elements. The material subroutine ensured that the model remained stable despite significant damage, which is a significant challenge for implicit damage simulations. Two analysis approaches were adopted using either the as-measured or modified (in-situ) ply strengths. Both approaches were capable of closely predicting the mean ultimate strength for a range of hole diameters. However, using the measured ply properties resulted in extensive matrix cracking in the surface ply which caused a deviation from the experimentally measured surface strain. The results demonstrate that high fidelity physically based modelling approaches have the ability to complement or replace certain experimental programs focussed on the design and certification of composite structures.
Original language | English |
---|---|
Pages (from-to) | 658-667 |
Number of pages | 10 |
Journal | Composite Structures |
Volume | 206 |
Early online date | 30 Aug 2018 |
DOIs | |
Publication status | Published - 15 Dec 2018 |
Keywords
- Computational modelling
- Laminates
- Strength prediction
- User subroutine (UMAT)