A linear hybrid active disturbance rejection controller design to extenuate powerline bushfires in resonant grounded distribution power systems

Mostafa Barzegar-Kalashani, Md Apel Mahmud*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This paper proposes a robust linear hybrid controller by combining the active disturbance rejection and proportional–integral controllers (ADRC+PI) for inverter-based arc suppression coils (ASCs) in resonant grounded distribution power systems (RGDPSs). Resonant grounding techniques are used in real power distribution networks for reducing the fault current in order to reduce the severity of powerline bushfires in the presence of single line-to-ground (SLG) faults. The severity of bushfire hazards due to these SLG faults depends on environmental conditions (e.g., wet or dry grounds) that define the behavior of the system. With respect to these conditions, the fault resistance will be lower for wet grounds for which the system model comprises one dominant pole while dry grounds force the system to have one dominant zero with two dominant poles. By considering the circumstances of such groundings, the behavior of power distribution systems changes when there are SLG faults. This paper investigates a detailed analysis in frequency- and time-domains to design a robust arc mitigator based on the hybrid ADRC+PI controller. Furthermore, the robustness of the proposed hybrid controller against the input disturbances is explored in terms of transient and steady-state stability analysis and the results are compared with the ADRC and PI controllers. In addition, the performance of the proposed hybrid ADRC+PI controller is justified by utilizing virtual- and real-time implementations in a digital signal processor (DSP) through MATLAB/SIMULINK platform on a 22 kV (line-to-line) RGDPS under distinctive grounding conditions.
Original languageEnglish
Article number108192
Number of pages14
JournalInternational Journal of Electrical Power & Energy Systems
Volume142
Issue numberPart B
Early online date24 May 2022
DOIs
Publication statusE-pub ahead of print - 24 May 2022

Fingerprint

Dive into the research topics of 'A linear hybrid active disturbance rejection controller design to extenuate powerline bushfires in resonant grounded distribution power systems'. Together they form a unique fingerprint.

Cite this