Abstract
The simulation, or forward modeling, of ground penetrating radar (GPR) is becoming a more frequently used approach to facilitate the interpretation of complex real GPR data, and as an essential component of full-waveform inversion (FWI). However, general full-wave 3-D electromagnetic (EM) solvers, such as the ones based on the finite-difference time-domain (FDTD) method, are still computationally demanding for simulating realistic GPR problems. We have developed a novel near-real-time, forward modeling approach for GPR that is based on a machine learning (ML) architecture. The ML framework uses an innovative training method that combines a predictive principal component analysis technique, a detailed model of the GPR transducer, and a large data set of modeled GPR responses from our FDTD simulation software. The ML-based forward solver is parameterized for a specific GPR application, but the framework can be applied to many different classes of GPR problems. To demonstrate the novelty and computational efficiency of our ML-based GPR forward solver, we used it to carry out FWI for a common infrastructure assessment application--determining the location and diameter of reinforcement bars in concrete. We tested our FWI with synthetic and real data and found a good level of accuracy in determining the rebar location, size, and surrounding material properties from both data sets. The combination of the near-real-time computation, which is orders of magnitude less than what is achievable by traditional full-wave 3-D EM solvers, and the accuracy of our ML-based forward model is a significant step toward commercially viable applications of FWI of GPR.
Original language | English |
---|---|
Article number | 8630654 |
Pages (from-to) | 4417-4426 |
Journal | IEEE Transactions on Geoscience and Remote Sensing |
Volume | 57 |
Issue number | 7 |
Early online date | 31 Jan 2019 |
DOIs | |
Publication status | Published - Jul 2019 |