A New Method to Evaluate the Dynamic Air Gap Thickness and Garment Sliding of Virtual Clothes During Walking

Pengpeng Hu, Edmond Ho, Nauman Aslam, Hubert P. H. Shum, Taku Komura

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
52 Downloads (Pure)

Abstract

With the development of e-shopping, there is a significant growth in clothing purchases online. However, the virtual clothing fit evaluation is still under-researched. In the literature, the thickness of the air layer between the human body and clothes is a dominant geometric indicator to evaluate the clothing fit. However, such an approach has only been applied to the stationary positions of the mannequin/human body. Physical indicators such as the pressure/tension of a virtual garment fitted on the virtual body in a continuous motion are also proposed for clothing fit evaluation. Neither geometric nor physical evaluations consider the interaction of the garment with the body, e.g., the sliding of the garment along the human body. In this study, a new framework was proposed to automatically determine the dynamic air gap thickness. First, the dynamic dressed character sequence was simulated in three-dimensional (3D) clothing software via importing the body parameters, cloth parameters, and a walking motion. Second, a cost function was defined to convert the garment in the previous frame to the local coordinate of the next frame. The dynamic air gap thickness between clothes and the human body was determined. Third, a new metric, the 3D garment vector field was proposed to represent the movement flow of the dynamic virtual garment, whose directional changes are calculated by cosine similarity. Experimental results show that our method is more sensitive to the small air gap thickness changes compared with state-of-the-art methods, allowing it to more effectively evaluate clothing fit in a virtual environment.

Original languageEnglish
Pages (from-to)4148-4161
Number of pages14
JournalTextile Reseach Journal
Volume89
Issue number19-20
Early online date13 Feb 2019
DOIs
Publication statusPublished - 1 Oct 2019

Cite this