TY - JOUR
T1 - A New Method to Evaluate the Dynamic Air Gap Thickness and Garment Sliding of Virtual Clothes During Walking
AU - Hu, Pengpeng
AU - Ho, Edmond
AU - Aslam, Nauman
AU - Shum, Hubert P. H.
AU - Komura, Taku
PY - 2019/10/1
Y1 - 2019/10/1
N2 - With the development of e-shopping, there is a significant growth in clothing purchases online. However, the virtual clothing fit evaluation is still under-researched. In the literature, the thickness of the air layer between the human body and clothes is a dominant geometric indicator to evaluate the clothing fit. However, such an approach has only been applied to the stationary positions of the mannequin/human body. Physical indicators such as the pressure/tension of a virtual garment fitted on the virtual body in a continuous motion are also proposed for clothing fit evaluation. Neither geometric nor physical evaluations consider the interaction of the garment with the body, e.g., the sliding of the garment along the human body. In this study, a new framework was proposed to automatically determine the dynamic air gap thickness. First, the dynamic dressed character sequence was simulated in three-dimensional (3D) clothing software via importing the body parameters, cloth parameters, and a walking motion. Second, a cost function was defined to convert the garment in the previous frame to the local coordinate of the next frame. The dynamic air gap thickness between clothes and the human body was determined. Third, a new metric, the 3D garment vector field was proposed to represent the movement flow of the dynamic virtual garment, whose directional changes are calculated by cosine similarity. Experimental results show that our method is more sensitive to the small air gap thickness changes compared with state-of-the-art methods, allowing it to more effectively evaluate clothing fit in a virtual environment.
AB - With the development of e-shopping, there is a significant growth in clothing purchases online. However, the virtual clothing fit evaluation is still under-researched. In the literature, the thickness of the air layer between the human body and clothes is a dominant geometric indicator to evaluate the clothing fit. However, such an approach has only been applied to the stationary positions of the mannequin/human body. Physical indicators such as the pressure/tension of a virtual garment fitted on the virtual body in a continuous motion are also proposed for clothing fit evaluation. Neither geometric nor physical evaluations consider the interaction of the garment with the body, e.g., the sliding of the garment along the human body. In this study, a new framework was proposed to automatically determine the dynamic air gap thickness. First, the dynamic dressed character sequence was simulated in three-dimensional (3D) clothing software via importing the body parameters, cloth parameters, and a walking motion. Second, a cost function was defined to convert the garment in the previous frame to the local coordinate of the next frame. The dynamic air gap thickness between clothes and the human body was determined. Third, a new metric, the 3D garment vector field was proposed to represent the movement flow of the dynamic virtual garment, whose directional changes are calculated by cosine similarity. Experimental results show that our method is more sensitive to the small air gap thickness changes compared with state-of-the-art methods, allowing it to more effectively evaluate clothing fit in a virtual environment.
KW - dynamic air gap thickness
KW - garment sliding
KW - body–clothes interaction
KW - 3D garment vector field (3DGVF)
KW - dynamic clothing fit
U2 - 10.1177/0040517519826930
DO - 10.1177/0040517519826930
M3 - Article
SN - 0040-5175
VL - 89
SP - 4148
EP - 4161
JO - Textile Reseach Journal
JF - Textile Reseach Journal
IS - 19-20
ER -