A self-consistent nonlinear force-free solution for a solar solution for a solar active region magnetic field

Michael Wheatland, Stephane Regnier

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)
21 Downloads (Pure)

Abstract

Nonlinear force-free solutions for the magnetic field in the solar corona constructed using photospheric vector magnetic field boundary data suffer from a basic problem: the observed boundary data are inconsistent with the nonlinear force-free model. Specifically, there are two possible choices of boundary conditions on vertical current provided by the data, and the two choices lead to different force-free solutions. A novel solution to this problem is described. Bayesian probability is used to modify the boundary values on current density, using field-line connectivity information from the two force-free solutions and taking into account uncertainties, so that the boundary data are more consistent with the two nonlinear force-free solutions. This procedure may be iterated until a set of self-consistent boundary data (the solutions for the two choices of boundary conditions are the same) is achieved. The approach is demonstrated to work in application to Hinode/Solar Optical Telescope observations of NOAA active region 10953.
Original languageEnglish
Pages (from-to)L88-L91
JournalThe Astrophysical Journal
Volume700
Issue number2
DOIs
Publication statusPublished - 1 Aug 2009

Keywords

  • Sun: corona
  • Sun: magnetic fields

Fingerprint

Dive into the research topics of 'A self-consistent nonlinear force-free solution for a solar solution for a solar active region magnetic field'. Together they form a unique fingerprint.

Cite this