Projects per year
Abstract
A seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi-layer structures. Here, a surfactant-mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft multi-layer structures, with an ultra-high interfacial toughness up to ≈1300 J m −2 for the architectural gel hybrid (AGH). The reversible noncovalent interfacial interactions efficiently dissipate energy at the interface, thereby providing excellent durability. The interfacial toughness only decreases by ≈6.9% after 10 000 tensile cycles. This strategy can be universally applied to hybrid systems with various interfaces between an interior hydrogel (PAA, PVA, PAAm, and gelatin) and an exterior hydrophobic soft matter (ionogel, lipogel and elastomer). The AGH-based mechano-sensor presents high robustness and stability in a wide range of conditions, including open air, underwater, and various solvents and temperatures. Epidermal bio-monitoring, tactile trajectory, and facial expression recognition are demonstrated using the AGH sensors in various environments. A rich set of electrophysiological signals of high quality are acquired.
Original language | English |
---|---|
Article number | 2301117 |
Pages (from-to) | 1-11 |
Number of pages | 11 |
Journal | Advanced Functional Materials |
Volume | 33 |
Issue number | 29 |
Early online date | 2 Apr 2023 |
DOIs | |
Publication status | Published - 18 Jul 2023 |
Keywords
- gel hybrids
- interface engineering
- mechano-sensing
- strain sensors
- ultra-stretchable
Projects
- 1 Finished
-
Stimuli-responsive gel based microfluidic switch
Xu, B. B. (PI)
Engineering and Physical Sciences Research Council
1/10/15 → 30/07/17
Project: Research