Adaptive Network Segmentation and Channel Allocation in Large scale V2X Communication Networks

Chong Han, Mehrdad Dianati, Yue Cao, Francis McCullough, Alexandros Mouzakitis

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
2 Downloads (Pure)

Abstract

Mobility, node density, and the demand for large volumes of data exchange have aggravated competition for limited resources in the wireless communications environment. This paper proposes a novel MAC scheme called segmentation MAC (SMAC), which can be used in large-scale vehicle-to-everything (V2X) communication networks. SMAC functions to support the dynamical allocation of radio channels. It is compatible with the asynchronous multi-channel MAC sub-layer extension of the IEEE 802.11p standard. A key innovate feature of SMAC is that the segmentation of the network and channel allocations are dynamically adjusted according to the density of vehicles. We also propose a novel efficient forwarding mechanism to ensure inter-segment connectivity. To evaluate the performance of inter-segment connectivity, a rigorous analytical model is proposed to measure the multi-hop dissemination latency. The proposal is evaluated in network simulator NS2 as well as the standard IEEE 1609.4 and two asynchronous multi-channel MAC benchmarks. Both analytical and simulation results demonstrate better effectiveness of the proposed scheme compared with the existing similar schemes in the literature.

Original languageEnglish
Pages (from-to)405-416
Number of pages12
JournalIEEE Transactions on Communications
Volume67
Issue number1
Early online date13 Sep 2018
DOIs
Publication statusPublished - 15 Jan 2019

Fingerprint Dive into the research topics of 'Adaptive Network Segmentation and Channel Allocation in Large scale V2X Communication Networks'. Together they form a unique fingerprint.

Cite this