TY - JOUR
T1 - Adjusting for unmeasured confounding in nonrandomized longitudinal studies: a methodological review
AU - Streeter, Adam J
AU - Lin, Nan
AU - Crathorne, Louise
AU - Haasova, Marcela
AU - Hyde, Christopher
AU - Melzer, David
AU - Henley, William
PY - 2017/7
Y1 - 2017/7
N2 - Objectives - Motivated by recent calls to use electronic health records for research, we reviewed the application and development of methods for addressing the bias from unmeasured confounding in longitudinal data.
Study Design and Setting - Methodological review of existing literature. We searched MEDLINE and EMBASE for articles addressing the threat to causal inference from unmeasured confounding in nonrandomized longitudinal health data through quasi-experimental analysis.
Results - Among the 121 studies included for review, 84 used instrumental variable analysis (IVA), of which 36 used lagged or historical instruments. Difference-in-differences (DiD) and fixed effects (FE) models were found in 29 studies. Five of these combined IVA with DiD or FE to try to mitigate for time-dependent confounding. Other less frequently used methods included prior event rate ratio adjustment, regression discontinuity nested within pre-post studies, propensity score calibration, perturbation analysis, and negative control outcomes.
Conclusion - Well-established econometric methods such as DiD and IVA are commonly used to address unmeasured confounding in nonrandomized longitudinal studies, but researchers often fail to take full advantage of available longitudinal information. A range of promising new methods have been developed, but further studies are needed to understand their relative performance in different contexts before they can be recommended for widespread use.
AB - Objectives - Motivated by recent calls to use electronic health records for research, we reviewed the application and development of methods for addressing the bias from unmeasured confounding in longitudinal data.
Study Design and Setting - Methodological review of existing literature. We searched MEDLINE and EMBASE for articles addressing the threat to causal inference from unmeasured confounding in nonrandomized longitudinal health data through quasi-experimental analysis.
Results - Among the 121 studies included for review, 84 used instrumental variable analysis (IVA), of which 36 used lagged or historical instruments. Difference-in-differences (DiD) and fixed effects (FE) models were found in 29 studies. Five of these combined IVA with DiD or FE to try to mitigate for time-dependent confounding. Other less frequently used methods included prior event rate ratio adjustment, regression discontinuity nested within pre-post studies, propensity score calibration, perturbation analysis, and negative control outcomes.
Conclusion - Well-established econometric methods such as DiD and IVA are commonly used to address unmeasured confounding in nonrandomized longitudinal studies, but researchers often fail to take full advantage of available longitudinal information. A range of promising new methods have been developed, but further studies are needed to understand their relative performance in different contexts before they can be recommended for widespread use.
KW - method review
KW - unmeasured confounding
KW - unobserved confounding
KW - longitudinal
KW - observational data
KW - electronic health records
U2 - 10.1016/j.jclinepi.2017.04.022
DO - 10.1016/j.jclinepi.2017.04.022
M3 - Article
VL - 87
SP - 23
EP - 34
JO - Journal of Clinical Epidemiology
JF - Journal of Clinical Epidemiology
SN - 0895-4356
ER -