Abstract
We have developed an intelligent agent to engage with users in virtual drama improvisation previously. The agent was able to perform sentence-level affect detection especially from inputs with strong emotional indicators. In this research, we employ latent semantic analysis to interpret emotional expressions with vague affect indicators and ambiguous audiences. Latent semantic analysis is thus used to perform topic theme detection and target audience identification for such inputs. Then we also discuss how affect is detected for such inputs without strong emotional indicators with the consideration of emotions expressed by the intended audiences and relationships between speakers and audiences. This work also proves to be effective in recognizing metaphorical phenomena. Moreover, uncertainty-based active learning is also employed to deal with more open-ended and imbalanced affect detection tasks. Overall, this work enables the AI agent to deal with challenging issues in affect detection tasks.
Original language | English |
---|---|
Pages | 1271-1272 |
Number of pages | 2 |
Publication status | Published - 30 May 2013 |
Event | 12th International Conference on Autonomous Agents and Multiagent Systems 2013, AAMAS 2013 - Saint Paul, MN, United States Duration: 6 May 2013 → 10 May 2013 |
Conference
Conference | 12th International Conference on Autonomous Agents and Multiagent Systems 2013, AAMAS 2013 |
---|---|
Country/Territory | United States |
City | Saint Paul, MN |
Period | 6/05/13 → 10/05/13 |
Keywords
- Affect detection
- Improvisation
- Latent semantic analysis