@article{054b73cb50ba4c459213318c267af639,
title = "Amundsen Sea Embayment ice-sheet mass-loss predictions to 2050 calibrated using observations of velocity and elevation change",
abstract = "Mass loss from the Amundsen Sea Embayment of the West Antarctic Ice Sheet is a major contributor to global sea-level rise (SLR) and has been increasing over recent decades. Predictions of future SLR are increasingly modelled using ensembles of simulations within which model parameters and external forcings are varied within credible ranges. Accurately reporting the uncertainty associated with these predictions is crucial in enabling effective planning for, and construction of defences against, rising sea levels. Calibrating model simulations against current observations of ice-sheet behaviour enables the uncertainty to be reduced. Here we calibrate an ensemble of BISICLES ice-sheet model simulations of ice loss from the Amundsen Sea Embayment using remotely sensed observations of surface elevation and ice speed. Each calibration type is shown to be capable of reducing the 90% credibility bounds of predicted contributions to SLR by 34 and 43% respectively.",
keywords = "Antarctic glaciology, glaciological model experiments, ice-sheet modelling",
author = "Suzanne Bevan and Stephen Cornford and Lin Gilbert and In{\'e}s Otosaka and Daniel Martin and Trystan Surawy-Stepney",
note = "Funding information: This publication was supported by PROTECT. This project has received funding from the European Union{\textquoteright}s Horizon 2020 research and innovation programme under grant agreement No 869304, PROTECT contribution number 71. Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research and Advanced Scientific Computing Research programs, as a part of the ProSPect SciDAC Partnership. Work at Berkeley Lab was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC award ASCR-ERCAPm1041.",
year = "2023",
month = aug,
day = "14",
doi = "10.1017/jog.2023.57",
language = "English",
pages = "1--11",
journal = "Journal of Glaciology",
issn = "0022-1430",
publisher = "Cambridge University Press",
}