Abstract
Dissolved oxygen (DO) concentration in water is one of the key parameters for assessing river water quality. Artificial intelligence (AI) methods have previously proved to be accurate tools for DO concentration prediction. This study presents the implementation of a deep learning approach applied to a recurrent neural network (RNN) algorithm. The proposed deep recurrent neural network (DRNN) model is compared with support vector machine (SVM) and artificial neural network (ANN) models, formerly shown to be robust AI algorithms. The Fanno Creek in Oregon (USA) is selected as a case study and daily values of water temperature, specific conductance, streamflow discharge, pH, and DO concentration are used as input variables to predict DO concentration for three different lead times ("t + 1," "t + 3," and "t + 7"). Based on Pearson's correlation coefficient, several input variable combinations are formed and used for prediction. The model prediction performance is evaluated using various indices such as correlation coefficient, Nash-Sutcliffe efficiency, root mean square error, and mean absolute error. The results identify the DRNN model ([Formula: see text]) as the most accurate among the three models considered, highlighting the potential of deep learning approaches for water quality parameter prediction.
Original language | English |
---|---|
Article number | 798 |
Number of pages | 18 |
Journal | Environmental Monitoring and Assessment |
Volume | 193 |
Issue number | 12 |
Early online date | 13 Nov 2021 |
DOIs | |
Publication status | Published - Dec 2021 |
Keywords
- Artificial neural network
- Predictive algorithm
- Dissolved oxygen concentration
- Deep recurrent neural network
- Support vector machine
- River water quality
- Neural Networks, Computer
- Environmental Monitoring
- Artificial Intelligence
- Oxygen/analysis
- Rivers