Analysis of various transport modes to evaluate personal exposure to PM2.5 pollution in Delhi

Kamal Jyoti Maji*, Anil Namdeo, Dan Hoban, Margaret Bell, Paul Goodman, S. M.Shiva Nagendra, Jo Barnes, Laura De Vito, Enda Hayes, James Longhurst, Rakesh Kumar, Niraj Sharma, Sudheer Kumar Kuppili, Dheeraj Alshetty

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Access to detailed comparisons of the air quality variations encountered when commuting through a city offers the urban traveller more informed choice on how to minimise personal exposure to inhalable pollutants. In this study we report on an experiment designed to compare atmospheric contaminants, in this case, PM2.5 inhaled during rickshaw, bus, metro, non-air-conditioned car, air-conditioned (AC) car and walking journeys through the city of Delhi, India. The data collection was carried out using a portable TSI SidePak Aerosol Monitor AM520, during February 2018. The results demonstrate that rickshaws (266 ± 159 μg/m3) and walking (259 ± 102 μg/m3) modes were exposed to significantly higher mean PM2.5 levels, whereas AC cars (89 ± 30 μg/m3) and the metro (72 ± 11 μg/m3) had the lowest overall exposure rates. Buses (113 ± 14 μg/m3) and non-AC cars (149 ± 13 μg/m3) had average levels of exposure, but open windows and local factors caused surges in PM2.5 for both transport modes. Closed air-conditioned transport modes were shown to be the best modes for avoiding high concentrations of PM2.5, however other factors (e.g. time of the day, window open or closed in the vehicles) affected exposure levels significantly. Overall, the highest total respiratory deposition doses (RDDs) values were estimated as 84.7 ± 33.4 μg/km, 15.8 ± 9.5 μg/km and 9.7 ± 0.9 μg/km for walking, rickshaw and non-AC car transported mode of journey, respectively. Unless strong pollution control measures are taken, the high exposure to PM2.5 levels will continue causing serious short-term and long-term health concerns for the Delhi residents. Implementing integrated and intelligent transport systems and educating commuters on ways to reduce exposure levels and impacts on commuter's health are required.

Original languageEnglish
Pages (from-to)417-431
Number of pages15
JournalAtmospheric Pollution Research
Volume12
Issue number2
Early online date10 Dec 2020
DOIs
Publication statusPublished - 1 Feb 2021

Fingerprint

Dive into the research topics of 'Analysis of various transport modes to evaluate personal exposure to PM<sub>2.5</sub> pollution in Delhi'. Together they form a unique fingerprint.

Cite this