Anisotropic N-Graphene-diffused Co3O4 nanocrystals with dense upper-zone top-on-plane exposure facets as effective ORR electrocatalysts

D. Hassen, M. A. Shenashen, A. R. El-Safty, A. Elmarakbi, S. A. El-Safty*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

42 Citations (Scopus)


We provide strong evidence of the effectiveness of homogenously self-propelled particle-in-particle diffusion, interaction and growth protocol. This technique was used for one-pot synthesis of novel nitrogen-graphene oxide (N-GO)/Co3O4 nanocrystals with cuboid rectangular prism-shaped nanorods (NRs) along {110}-plane and truncated polyhedrons with densely-exposed, multi-facet sites along {311} and {111} planes. These hierarchal nanocrystals create electrode catalyst patterns with vast-range accessibility to active Co2+ sites, a vascular system for the transport and retention of captured O2 molecule interiorly, and low adsorption energy and dense electron configuration surfaces during the oxygen reduction reaction (ORR). The superior electrocatalytic ORR activity of the N-GO/Co3O4 polyhedron nanocrystals in terms of electrochemical selectivity, durability and stability compared with NRs or commercial Pt/C catalysts confirms the synergetic contribution of multi-functional, dense-exposed, and actively topographic facets of polyhedrons to significantly activate the catalytic nature of the catalyst. Our findings show real evidence, for the first time that not only the large number of catalytically active Co2+ cations at the top surface layer but also the dense location of active Co2+ sites on the upper-zone top-on-plane exposure, and the electron density configuration and distribution around the Co2+ sites were important for effective ORR.

Original languageEnglish
Article number3740
Number of pages14
JournalScientific Reports
Issue number1
Early online date27 Feb 2018
Publication statusPublished - 1 Dec 2018
Externally publishedYes


Dive into the research topics of 'Anisotropic N-Graphene-diffused Co<sub>3</sub>O<sub>4</sub> nanocrystals with dense upper-zone top-on-plane exposure facets as effective ORR electrocatalysts'. Together they form a unique fingerprint.

Cite this