TY - JOUR
T1 - Anodal tDCS improves neuromuscular adaptations to short-term resistance training of the knee extensors in healthy individuals
AU - Angius, Luca
AU - Ansdell, Paul
AU - Škarabot, Jakob
AU - Goodall, Stuart
AU - Thomas, Kevin
AU - Cowper, Gavin
AU - Santarnecchi, Emiliano
AU - Kidgell, Dawson J.
AU - Howatson, Glyn
PY - 2024/12/1
Y1 - 2024/12/1
N2 - Experimental studies show improvement in physical performance following acute application of transcranial direct current stimulation (tDCS). This study examined the neuromuscular and neural responses to a single training session (Part 1) and following a 3 wk resistance training program (Part 2) performed with the knee extensors, preceded by tDCS over the primary motor cortex. Twenty-four participants (age, 30 ± 7 yr; stature, 172 ± 8 cm; mass, 72 ± 15 kg) were randomly allocated to perform either resistance training with anodal tDCS (a-tDCS) or a placebo tDCS (Sham). Resistance training consisted of 3×10 isometric contractions of 3 s at 75% maximal voluntary contraction (MVC). Measures of neuromuscular function (MVC, voluntary activation, and potentiated twitch force), corticospinal excitability, along with short and long cortical inhibition were assessed. Acute tDCS did not affect neuromuscular and neural responses to a single training session (all P ≥ 0.10). Conversely, after the 3 wk training program, MVC increased in both groups (P < 0.01) with a greater increase observed for a-tDCS vs. Sham (∼6%, P = 0.04). Additionally, increased voluntary activation (∼2%, P = 0.04) and corticospinal excitability (∼22%, P = 0.04), accompanied by a shorter silent period (-13%, P = 0.04) were found after atDCS vs. Sham. The potentiated twitch force and measures of short and long cortical inhibition did not change after the training program (all P ≥ 0.29). Pretraining administration of tDCS only resulted in greater neuromuscular adaptations following 3 wk of resistance training. These results provide new evidence that tDCS facilitates adaptations to resistance training in healthy individuals.
AB - Experimental studies show improvement in physical performance following acute application of transcranial direct current stimulation (tDCS). This study examined the neuromuscular and neural responses to a single training session (Part 1) and following a 3 wk resistance training program (Part 2) performed with the knee extensors, preceded by tDCS over the primary motor cortex. Twenty-four participants (age, 30 ± 7 yr; stature, 172 ± 8 cm; mass, 72 ± 15 kg) were randomly allocated to perform either resistance training with anodal tDCS (a-tDCS) or a placebo tDCS (Sham). Resistance training consisted of 3×10 isometric contractions of 3 s at 75% maximal voluntary contraction (MVC). Measures of neuromuscular function (MVC, voluntary activation, and potentiated twitch force), corticospinal excitability, along with short and long cortical inhibition were assessed. Acute tDCS did not affect neuromuscular and neural responses to a single training session (all P ≥ 0.10). Conversely, after the 3 wk training program, MVC increased in both groups (P < 0.01) with a greater increase observed for a-tDCS vs. Sham (∼6%, P = 0.04). Additionally, increased voluntary activation (∼2%, P = 0.04) and corticospinal excitability (∼22%, P = 0.04), accompanied by a shorter silent period (-13%, P = 0.04) were found after atDCS vs. Sham. The potentiated twitch force and measures of short and long cortical inhibition did not change after the training program (all P ≥ 0.29). Pretraining administration of tDCS only resulted in greater neuromuscular adaptations following 3 wk of resistance training. These results provide new evidence that tDCS facilitates adaptations to resistance training in healthy individuals.
KW - brain stimulation
KW - force
KW - maximal voluntary contraction
KW - neural adaptation
KW - resistance training
UR - http://www.scopus.com/inward/record.url?scp=85210769121&partnerID=8YFLogxK
U2 - 10.1152/jn.00289.2024
DO - 10.1152/jn.00289.2024
M3 - Article
SN - 0022-3077
VL - 132
SP - 1793
EP - 1804
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 6
ER -