Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling

Seung Jin Oh, Muhammad Wakil Shahzad, Muhammad Burhan, Wongee Chun, Chua Kian Jon, M. KumJa, Kim Choon Ng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)

Abstract

This paper presents a mathematical model to enable a more in-depth understanding of the combined heat and mass transfer processes of a counter-flow indirect evaporative cooler operating in semi-arid regions. A series of simulation was conducted to compare the performances between a single-purge and four-purge configurations. Furthermore, the effect of several parameters on the performance of the single-purge configuration was investigated under the baseline condition. The developed model was validated against experimental data from literature to within 2% discrepancy. Key results revealed that the single-purge configuration produced higher cooling capacity (around 20% higher), as well as higher dew-point effectiveness under the same operating conditions. A parametric study was also made on the single-purge configuration. The results revealed that lower product air temperature and higher dew-point effectiveness were achieved with longer channel length and larger purge ratio. However, the maximum cooling capacity approached its maximum with longer channel length and 35% purge ratio.

Original languageEnglish
Pages (from-to)505-515
Number of pages11
JournalEnergy
Volume168
Early online date21 Nov 2018
DOIs
Publication statusPublished - 1 Feb 2019
Externally publishedYes

Keywords

  • Cooling capacity
  • Dew-point evaporative cooler
  • Indirect evaporative cooler
  • Numerical simulation
  • Purge configuration

Fingerprint

Dive into the research topics of 'Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling'. Together they form a unique fingerprint.

Cite this