Abstract
Fuzzy and hybrid genetic-fuzzy approaches were used to assess and improve quality of service (QoS) in simulated wireless networks. Three real-time audio and video applications were transmitted over the networks. The QoS provided by the networks for each application was quantitatively assessed using a fuzzy inference system (FIS). Two methods to improve the networks' QoS were developed. One method was based on a FIS mechanism and the other used a hybrid genetic-fuzzy system. Both methods determined an optimised value for the minimum contention window (CW min) in IEEE 802.11 medium access control (MAC) protocol. CW min affects the time period a wireless station waits before it transmits a packet and thus its value influences QoS. The average QoS for the audio and video applications improved by 42.8% and 14.5% respectively by using the FIS method. The hybrid genetic-fuzzy system improved the average QoS for the audio and video applications by 35.7% and 16.5% respectively. The study indicated that the devised methods were effective in assessing and significantly improving QoS in wireless networks.
Original language | English |
---|---|
Pages (from-to) | 95-111 |
Journal | Artificial Intelligence Review |
Volume | 27 |
Issue number | 2-3 |
DOIs | |
Publication status | Published - Mar 2007 |