Abstract
Introduction: Preclinical studies with osteoprogenitor cells derived from human embryonic stem cells (hESC) do not lead to substantial bone regeneration in vivo. The degree of survival following implantation might play a role in their long term efficiency. We investigated the initial engraftment of hESCs-derived cells during two weeks post-implantation and compared it to such response for adult bone marrow stromal cells (hBMSC)-derived osteoprogenitor cells. Methods: hBMSC and H9-hES cells pre-treated with osteogenic factors were implanted into a calvarial defect in both adult WT and nude rats. At days 7 and 14 post-implantation, samples were analysed for persistence of implanted cells, initiation of regeneration of host bone, angiogenesis and apoptosis.
Results: At day 7, hESC and hBMSC were detected within defects in both rat strains. By day 14 human cells were only detected in immune-deficient rats whilst still maintaining an osteoblastic phenotype and engendered a significant increase in bone formation. In WT animals, the participation of implanted cells was very limited due to their poor survival. Conclusion: This study demonstrates the ability of hESC and hBMSC derived osteoprogenitor cells to survive transplantation, to engraft and to develop an osteogenic phenotype during the early stage following implantation, validating the appropriate preclinical model.
Original language | English |
---|---|
Pages (from-to) | 241-253 |
Journal | The Journal of Musculoskeletal and Neuronal Interactions |
Volume | 12 |
Issue number | 4 |
Publication status | Published - Dec 2012 |
Keywords
- bone regeneration
- osteoprogenitors
- stem Cells
- transplantation
- calvarial model