## Abstract

The flow field of a medium sliding without friction over a strongly undulating surface is calculated numerically. The results are used to elucidate the basal-flow characteristics of glacier flow and they are discussed with reference to known analytical solutions. Extrusion flow is found to become increasingly pronounced as the value of n, where n is a parameter in Glen's flow law, becomes larger. For sinusoidal bedrock undulations, a flow separation occurs if the amplitude-to-wavelength ratio exceeds a critical value of about 0.28. The main flow then sets up a secondary flow circulation within the trough, and the ice participating in this circular motion theoretically never leaves it. The sliding velocity is calculated numerically as a function of the mean basal shear stress, the amplitude-to-wavelength ratio and the flow parameter n. For moderate and high slope fluctuations, the sliding velocity is significantly different from what would be expected from results based on the small-slope approximation.

Original language | English |
---|---|

Pages (from-to) | 80-89 |

Number of pages | 10 |

Journal | Journal of Glaciology |

Volume | 43 |

Issue number | 143 |

DOIs | |

Publication status | Published - 1997 |

Externally published | Yes |