Abstract
The propagation of magnetoacoustic waves in the neighbourhood of a 2D null point is investigated for both β=0 and β ≠ 0 plasmas. Previous work has shown that the Alfvén speed, here v A ∝r, plays a vital role in such systems and so a natural choice is to switch to polar coordinates. For β=0 plasma, we derive an analytical solution for the behaviour of the fast magnetoacoustic wave in terms of the Klein–Gordon equation. We also solve the system with a semi-analytical WKB approximation which shows that the β=0 wave focuses on the null and contracts around it but, due to exponential decay, never reaches the null in a finite time. For the β ≠ 0 plasma, we solve the system numerically and find the behaviour to be similar to that of the β=0 system at large radii, but completely different close to the null. We show that for an initially cylindrically-symmetric fast magnetoacoustic wave perturbation, there is a decrease in wave speed along the separatrices and so the perturbation starts to take on a quasi-diamond shape; with the corners located along the separatrices. This is due to the growth in pressure gradients that reach a maximum along the separatrices, which in turn reduces the acceleration of the fast wave along the separatrices leading to a deformation of the wave morphology.
Original language | English |
---|---|
Journal | Journal of Astrophysics and Astronomy |
Volume | 37 |
Issue number | 1 |
Early online date | 23 Feb 2016 |
DOIs | |
Publication status | Published - Mar 2016 |
Keywords
- Magnetohydrodynamics (MHD)
- waves
- magnetic fields
- Sun: atmosphere—corona