Bimetal based inorganic-carbonic anhydrase hybrid hydrogel membrane for CO2 capture

Huan Wen, Lei Zhang, Yingjie Du, Ziyuan Wang, Yunhong Jiang, Hongjie Bian, Jiandong Cui, Shiru Jia

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
1 Downloads (Pure)

Abstract

In this study, we synthesized for the first time a bimetal-based inorganic-carbonic anhydrase (CA) hybrid nanoflower to immobilize CA using Cu2+ and Zn2+ instead of single metal ion. Subsequently, the synthesized bimetallic hybrid nanoflowers (CANF) were embedded into the poly(vinyl alcohol) (PVA)-chitosan (CS) hydrogel networks to obtain PVA/CS@CANF hydrogel membrane. The CANF exhibited a significantly higher activity recovery of 70 % compared with 35 % with CA/Zn3(PO4)2 hybrid nanoflowers and 10 % with CA/Cu3(PO4)2 hybrid nanoflowers. The PVA/CS@CANF hydrogel membrane possessed excellent mechanical strength, high catalytic activity, and were easy to flow out without centrifugation or filtration. At the same time, the PVA/CS@CANF displayed higher thermostability, storage stability, and pH stability than free CA and CANF, and superior reusability and CO2 capture capacity. The hydrogel membrane maintained more than 75 % of its original activity after 8 cycles. However, CANF only maintained 12 % of its original activity. Furthermore, the amount of CaCO3 produced by PVA/CS@CANF membrane was 9.0-fold and 2.0-fold compared with free CA and CANF, respectively. Therefore, This approach to synthesizing bimetallic-based protein hybrid hydrogel membrane could have a bright future in CO2 capture.
Original languageEnglish
Article number101171
JournalJournal of CO2 Utilization
Volume39
Early online date12 Apr 2020
DOIs
Publication statusPublished - 1 Jul 2020

Fingerprint

Dive into the research topics of 'Bimetal based inorganic-carbonic anhydrase hybrid hydrogel membrane for CO2 capture'. Together they form a unique fingerprint.

Cite this