Binding of extracellular maspin to beta1 integrins inhibits vascular smooth muscle cell migration.

Rosemary Bass, Laura Wagstaff, Lorna Ravenhill, Vincent Ellis

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Maspin is a serpin that has multiple effects on cell behavior, including inhibition of migration. How maspin mediates these diverse effects remains unclear, as it is devoid of protease inhibitory activity. We have previously shown that maspin rapidly inhibits the migration of vascular smooth muscle cells (VSMC), suggesting the involvement of direct interactions with cell surface proteins. Here, using immunofluorescence microscopy, we demonstrate that maspin binds specifically to the surface of VSMC in the dedifferentiated, but not the differentiated, phenotype. Ligand blotting of VSMC lysates revealed the presence of several maspin-binding proteins, with a protein of 150 kDa differentially expressed between the two VSMC phenotypes. Western blotting suggested that this protein was the beta1 integrin subunit, and subsequently both alpha3beta1 and alpha5beta1, but not alphavbeta3, were shown to associate with maspin by coimmunoprecipitation. Specific binding of these integrins was also observed using maspin-affinity chromatography, using HT1080 cell lysates. Direct binding of maspin to alpha5beta1 was confirmed using a recombinant alpha5beta1-Fc fusion protein. Using conformation-dependent anti-beta1 antibodies, maspin binding to VSMC was found to lead to a decrease in the activation status of the integrin. The functional involvement of alpha5beta1 in mediating the effect of maspin was established by the inhibition of migration of CHO cells overexpressing human alpha5 integrin, but not those lacking alpha5 expression. Our observations suggest that maspin engages in specific interactions with a limited number of integrins on VSMC, leading to their inactivation, and that these interactions are responsible for the effects of maspin in the pericellular environment.
Original languageEnglish
Pages (from-to)27712-27720
JournalThe Journal of Biological Chemistry
Volume284
Issue number40
DOIs
Publication statusPublished - 2009

Fingerprint Dive into the research topics of 'Binding of extracellular maspin to beta1 integrins inhibits vascular smooth muscle cell migration.'. Together they form a unique fingerprint.

Cite this