TY - JOUR
T1 - Blind source separation of postnonlinear convolutive mixture
AU - Zhang, Jingyi
AU - Woo, W. L.
AU - Dlay, S. S.
PY - 2007/11
Y1 - 2007/11
N2 - In this paper, a novel solution is developed to solve blind source separation of postnonlinear convolutive mixtures. The proposed model extends the conventional linear instantaneous mixture model to include both convolutive mixing and postnonlinear distortion. The maximum-likelihood (ML) approach solution based on the expectation-maximization (EM) algorithm is developed to estimate the source signals and the parameters in the proposed nonlinear model. In the proposed solution, the sufficient statistics associated with the source signals are estimated in the E-step, while the model parameters are optimized through these statistics in the M-step. However, the complication resulted from the postnonlinear function associated with the mixture renders these statistics difficult to be formulated in a closed form and hence causes intractability in the parameter optimization. A computationally efficient algorithm is proposed which uses the extended Kalman smoother (EKS) to facilitate the E-step tractable and a set of self-updated polynomials is used as the nonlinearity estimator to facilitate closed form estimations of the parameters in the M-step. The theoretical foundation of the proposed solution has been rigorously developed and discussed in details. Both simulations and recorded speech signals have been carried out to verify the success and efficacy of the proposed algorithm. Remarkable improvement has been obtained when compared with the existing algorithms.
AB - In this paper, a novel solution is developed to solve blind source separation of postnonlinear convolutive mixtures. The proposed model extends the conventional linear instantaneous mixture model to include both convolutive mixing and postnonlinear distortion. The maximum-likelihood (ML) approach solution based on the expectation-maximization (EM) algorithm is developed to estimate the source signals and the parameters in the proposed nonlinear model. In the proposed solution, the sufficient statistics associated with the source signals are estimated in the E-step, while the model parameters are optimized through these statistics in the M-step. However, the complication resulted from the postnonlinear function associated with the mixture renders these statistics difficult to be formulated in a closed form and hence causes intractability in the parameter optimization. A computationally efficient algorithm is proposed which uses the extended Kalman smoother (EKS) to facilitate the E-step tractable and a set of self-updated polynomials is used as the nonlinearity estimator to facilitate closed form estimations of the parameters in the M-step. The theoretical foundation of the proposed solution has been rigorously developed and discussed in details. Both simulations and recorded speech signals have been carried out to verify the success and efficacy of the proposed algorithm. Remarkable improvement has been obtained when compared with the existing algorithms.
KW - Blind source separation (BSS)
KW - Independent component analysis (ICA)
KW - Signal reconstruction
U2 - 10.1109/TASL.2007.903310
DO - 10.1109/TASL.2007.903310
M3 - Article
AN - SCOPUS:48849089823
VL - 15
SP - 2311
EP - 2330
JO - IEEE Transactions on Speech and Audio Processing
JF - IEEE Transactions on Speech and Audio Processing
SN - 1558-7916
IS - 8
ER -