Abstract
The practical implementation of aqueous Zn-ion batteries (ZIBs) for large-scale energy storage is impeded by the challenges of water-induced parasitic reactions and uncontrolled dendrite growth. Herein, we propose a strategy to regulate both anions and cations of electrolyte solvation structures to address above challenges, by introducing an electrolyte additive of 3-hydroxy-4-(trimethylammonio)butyrate (HTMAB) into ZnSO4 electrolyte. Consequently, the deposition of Zn is significantly improved leading to a highly reversible Zn anode with paralleled texture. The Zn/Zn cells with ZnSO4/HTMAB exhibit outstanding cycling performance, showcasing a lifespan exceeding 7500 h and an exceptionally high accumulative capacity of 16.47 Ah cm−2. Zn/NaV3O8·1.5H2O full cell displays a specific capacity of ~130 mAh g−1 at 5 A g−1 maintaining a capacity retention of 93% after 2000 cycles. This work highlights the regulation on both cations and anions of electrolyte solvation structures in optimizing interfacial stability during Zn plating/stripping for high performance ZIBs.
Original language | English |
---|---|
Article number | e12438 |
Number of pages | 11 |
Journal | EcoMat |
Volume | 6 |
Issue number | 3 |
Early online date | 21 Feb 2024 |
DOIs | |
Publication status | Published - 1 Mar 2024 |
Keywords
- Zn plating/stripping
- electrolyte additive
- solvation structure
- zinc-ion batteries