TY - JOUR
T1 - Built environment microbiomes transition from outdoor to human-associated communities after construction and commissioning
AU - Young, Greg
AU - Sherry, Angela
AU - Smith, Darren
N1 - Funding information: Funding was provided by Research England (Grant number: Expanding Excellence in England (E3), Hub for Biotechnology in the Built Environment).
PY - 2023/9/22
Y1 - 2023/9/22
N2 - The microbiota of the built environment is linked to usage, materials and, perhaps most importantly, human health. Many studies have attempted to identify ways of modulating microbial communities within built environments to promote health. None have explored how these complex communities assemble initially, following construction of new built environments. This study used high-throughput targeted sequencing approaches to explore bacterial community acquisition and development throughout the construction of a new build. Microbial sampling spanned from site identification, through the construction process to commissioning and use. Following commissioning of the building, bacterial richness and diversity were significantly reduced (P < 0.001) and community structure was altered (R2 = 0.14; P = 0.001). Greater longitudinal community stability was observed in outdoor environments than indoor environments. Community flux in indoor environments was associated with human interventions driving environmental selection, which increased 10.4% in indoor environments following commissioning. Increased environmental selection coincided with a 12% reduction in outdoor community influence on indoor microbiomes (P = 2.00 × 10–15). Indoor communities became significantly enriched with human associated genera including Escherichia, Pseudomonas, and Klebsiella spp. These data represent the first to characterize the initial assembly of bacterial communities in built environments and will inform future studies aiming to modulate built environment microbiota.
AB - The microbiota of the built environment is linked to usage, materials and, perhaps most importantly, human health. Many studies have attempted to identify ways of modulating microbial communities within built environments to promote health. None have explored how these complex communities assemble initially, following construction of new built environments. This study used high-throughput targeted sequencing approaches to explore bacterial community acquisition and development throughout the construction of a new build. Microbial sampling spanned from site identification, through the construction process to commissioning and use. Following commissioning of the building, bacterial richness and diversity were significantly reduced (P < 0.001) and community structure was altered (R2 = 0.14; P = 0.001). Greater longitudinal community stability was observed in outdoor environments than indoor environments. Community flux in indoor environments was associated with human interventions driving environmental selection, which increased 10.4% in indoor environments following commissioning. Increased environmental selection coincided with a 12% reduction in outdoor community influence on indoor microbiomes (P = 2.00 × 10–15). Indoor communities became significantly enriched with human associated genera including Escherichia, Pseudomonas, and Klebsiella spp. These data represent the first to characterize the initial assembly of bacterial communities in built environments and will inform future studies aiming to modulate built environment microbiota.
UR - http://www.scopus.com/inward/record.url?scp=85172005830&partnerID=8YFLogxK
U2 - 10.1038/s41598-023-42427-0
DO - 10.1038/s41598-023-42427-0
M3 - Article
SN - 2045-2322
VL - 13
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 15854
ER -