TY - JOUR
T1 - Calamitic and antinematic orientational order produced by the generalized Straley lattice model
AU - Bisi, Fulvio
AU - De Matteis, Giovanni
AU - Romano, Silvano
PY - 2013
Y1 - 2013
N2 - We consider here a classical model, consisting of D2h-symmetric particles in a three-dimensional simple-cubic lattice; the pair potential is isotropic in orientation space, and restricted to nearest neighbors. The simplest potential model is written in terms of the squares of the scalar products between unit vectors describing the three interacting arms of the molecules, as proposed in previous literature. Two predominant antinematic couplings of equal strength (+1) are perturbed by a comparatively weaker calamitic one, parameterized by a coupling constant −z ranging in [−1,0]. This choice rules out thermodynamically stable phases endowed with macroscopic biaxiality. The antinematic terms favor states with the corresponding molecular axes mutually orthogonal. Although the low-temperature phase of the special case with null calamitic term (PP0) is uniaxial and antinematically ordered, in the general case presented here both Monte Carlo and molecular-field approaches show that, for z close to zero, the models exhibit a low-temperature uniaxial nematic phase, followed by an antinematic one, and finally by the orientationally disordered one. On the other hand, for sufficiently large values of z, we only find evidence of uniaxial calamitic behavior, as expected by following the limiting cases.
AB - We consider here a classical model, consisting of D2h-symmetric particles in a three-dimensional simple-cubic lattice; the pair potential is isotropic in orientation space, and restricted to nearest neighbors. The simplest potential model is written in terms of the squares of the scalar products between unit vectors describing the three interacting arms of the molecules, as proposed in previous literature. Two predominant antinematic couplings of equal strength (+1) are perturbed by a comparatively weaker calamitic one, parameterized by a coupling constant −z ranging in [−1,0]. This choice rules out thermodynamically stable phases endowed with macroscopic biaxiality. The antinematic terms favor states with the corresponding molecular axes mutually orthogonal. Although the low-temperature phase of the special case with null calamitic term (PP0) is uniaxial and antinematically ordered, in the general case presented here both Monte Carlo and molecular-field approaches show that, for z close to zero, the models exhibit a low-temperature uniaxial nematic phase, followed by an antinematic one, and finally by the orientationally disordered one. On the other hand, for sufficiently large values of z, we only find evidence of uniaxial calamitic behavior, as expected by following the limiting cases.
U2 - 10.1103/PhysRevE.88.032502
DO - 10.1103/PhysRevE.88.032502
M3 - Article
SN - 1539-3755
SN - 1550-2376
SN - 2470-0045
SN - 2470-0053
VL - 88
SP - 032502
JO - Physical Review E
JF - Physical Review E
IS - 3
ER -