Capillary Bridges on Liquid-Infused Surfaces

Alvin C. M. Shek, Ciro Semprebon, Jake R. Panter, Halim Kusumaatmaja*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
45 Downloads (Pure)


We numerically study two-component capillary bridges formed when a liquid droplet is placed in between two liquid-infused surfaces (LIS). In contrast to commonly studied one-component capillary bridges on noninfused solid surfaces, two-component liquid bridges can exhibit a range of different morphologies where the liquid droplet is directly in contact with two, one, or none of the LIS substrates. In addition, the capillary bridges may lose stability when compressed due to the envelopment of the droplet by the lubricant. We also characterize the capillary force, maximum separation, and effective spring force and find that they are influenced by the shape and size of the lubricant ridge. Importantly, these can be tuned to increase the effective capillary adhesion strength by manipulating the lubricant pressure, Neumann angle, and wetting contact angles. As such, LIS are not only “slippery” parallel to the surface, but they are also “sticky” perpendicular to the surface.
Original languageEnglish
Pages (from-to)908-917
Number of pages10
Issue number2
Early online date4 Jan 2021
Publication statusPublished - 19 Jan 2021


Dive into the research topics of 'Capillary Bridges on Liquid-Infused Surfaces'. Together they form a unique fingerprint.

Cite this