TY - JOUR
T1 - Caves as observatories for atmospheric thermal tides
T2 - an example from Ascunsă Cave, Romania
AU - Dragusin, Virgil
AU - Tîrlă, Laura
AU - Cadicheanu, Nicoleta
AU - Ersek, Vasile
AU - Mirea, Ionuţ-Cornel
PY - 2018/2/13
Y1 - 2018/2/13
N2 - As part of a microclimate study at Ascunsă Cave, Romania, we used Gemini Tinytag Plus 2 data loggers to record cave air temperature variability. At one of the monitoring points we recognized the presence of semidiurnal cycles on the order of a few thousands of a degree Celsius that could be produced under the influence of the semidiurnal tidal components of the Sun (S2) or the Moon (M2). Using a Gemini Tinytag Plus 2 data logger with an external probe we measured core rock temperature and showed that it does not influence the cave air temperature on such short time scales. We thus rejected the possibility that Earth tides, mostly produced by the lunar tidal influence on the Earth’s crust, would have had a semidiurnal influence on cave air temperature. Moreover, time series analysis revealed a 12.00-hour periodicity in temperature data, specific for the S2, allowing us to assign these variations to the influence of the thermo-tidal action of the Sun. Using the Ideal Gas Law and assuming a constant volume and amount of air, we calculated that a theoretical change in atmospheric pressure of around 40 Pa was needed to produce the temperature changes we observed. This agrees with published values of atmospheric pressure changes induced by the semidiurnal solar component of the thermal tides (S2(t)). We thus can assign the observed temperature changes to semidiurnal atmospheric pressure changes (S2(p)) induced by the thermal excitation of the Sun. Our study signals the possibility that readily available data from cave monitoring studies around the world could be used in the study of atmospheric tides. Moreover, it appears that Ascunsă Cave acts as a natural meteorological filter on a short time scale, removing the direct thermal influences of the Sun (especially night and day differences) and preserving only the barometric information from the surface.
AB - As part of a microclimate study at Ascunsă Cave, Romania, we used Gemini Tinytag Plus 2 data loggers to record cave air temperature variability. At one of the monitoring points we recognized the presence of semidiurnal cycles on the order of a few thousands of a degree Celsius that could be produced under the influence of the semidiurnal tidal components of the Sun (S2) or the Moon (M2). Using a Gemini Tinytag Plus 2 data logger with an external probe we measured core rock temperature and showed that it does not influence the cave air temperature on such short time scales. We thus rejected the possibility that Earth tides, mostly produced by the lunar tidal influence on the Earth’s crust, would have had a semidiurnal influence on cave air temperature. Moreover, time series analysis revealed a 12.00-hour periodicity in temperature data, specific for the S2, allowing us to assign these variations to the influence of the thermo-tidal action of the Sun. Using the Ideal Gas Law and assuming a constant volume and amount of air, we calculated that a theoretical change in atmospheric pressure of around 40 Pa was needed to produce the temperature changes we observed. This agrees with published values of atmospheric pressure changes induced by the semidiurnal solar component of the thermal tides (S2(t)). We thus can assign the observed temperature changes to semidiurnal atmospheric pressure changes (S2(p)) induced by the thermal excitation of the Sun. Our study signals the possibility that readily available data from cave monitoring studies around the world could be used in the study of atmospheric tides. Moreover, it appears that Ascunsă Cave acts as a natural meteorological filter on a short time scale, removing the direct thermal influences of the Sun (especially night and day differences) and preserving only the barometric information from the surface.
KW - cave atmosphere
KW - thermal tide
KW - semidiurnal
KW - S2(t)
KW - Romania
U2 - 10.5038/1827-806X.47.1.2180
DO - 10.5038/1827-806X.47.1.2180
M3 - Article
SN - 0392-6672
VL - 47
JO - International Journal of Speleology
JF - International Journal of Speleology
IS - 1
ER -