Changes in latent fingermark glyceride composition as a function of sample age using UPLC-IMS-QToF-MSE

Amanda Frick, Natalie Kummer, Ana Moraleda, C. Weyermann

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The composition of fingermark residue has been an important topic in forensic science, mainly in efforts to better understand and eventually improve the efficacy of latent fingermark detection methods. While the lipid fraction has been extensively studied, there is currently little information about how the glyceride fraction of latent fingermarks is chemically altered over time following deposition. A previously reported untargeted ultra performance liquid chromatography-ion mobility spectrometry-quadrupole time-of-flight mass spectrometry (UPLC-IMS-QToF-MSE) method was used to investigate changes over time in fingermark di- and triglycerides. Charged latent fingermark samples from 5 donors were analysed up to 28 days following deposition. Significant changes in glyceride composition occurred with increased sample age, attributed primarily to the oxidation of unsaturated triglycerides through ozonolysis. Considerably fewer unsaturated TGs were identified in samples 7 and 28 days following deposition, while mono- and diozonides of these lipids were identified as major components of aged samples. Additional compounds were identified as possible aldehyde and carboxylic acid derivatives resulting from the reaction of water with ozonolysis intermediates. While the onset of these processes occurred rapidly following deposition, continuing oxidation over time was seen via the progressive ozonolysis of diunsaturated triglycerides. These results represent a further step towards understanding the factors affecting fingermark composition, ageing and subsequent detection under operational conditions.
Original languageEnglish
Pages (from-to)4212-4223
Number of pages12
JournalAnalyst
Volume145
Issue number12
Early online date1 May 2020
DOIs
Publication statusPublished - 21 Jun 2020

Fingerprint

Dive into the research topics of 'Changes in latent fingermark glyceride composition as a function of sample age using UPLC-IMS-QToF-MSE'. Together they form a unique fingerprint.

Cite this