TY - JOUR
T1 - Characterization of CuInSe2 material and devices: comparison of thermal and electrochemically prepared absorber layers
AU - Dale, Phillip
AU - Samantilleke, A. P.
AU - Zoppi, Guillaume
AU - Forbes, Ian
AU - Peter, Laurence
PY - 2008/4
Y1 - 2008/4
N2 - CuInSe2-based absorber layers for photovoltaic devices have been fabricated using two different scalable processes, electrodeposition and sputtering, both followed by thermal annealing. The structural properties of the absorber layers were studied by SEM, XRD and MiniSIMS. Sputtered absorber layers exhibit larger grain sizes than electrodeposited layers, but both types of film consist of randomly orientated crystallites. Electrodeposited layers appear to have a uniform composition with evidence of a MoSe2 layer at the back contact, whilst sputtered layers show no evidence for a MoSe2 layer. The external quantum efficiency spectrum of films and completed devices was measured, and the band gap and broadening parameters were obtained using electroreflectance spectroscopy. A device based on electrodeposited CuInSe2 achieved an AM 1.5 efficiency of 6.6%, whilst a device based on sputtered CuInSe2 had an efficiency of 8.3%. Impedance measurements were used to calculate doping densities of 2 × 1016 and 4 × 1015 cm?3 for the electrodeposited and sputtered devices, respectively.
AB - CuInSe2-based absorber layers for photovoltaic devices have been fabricated using two different scalable processes, electrodeposition and sputtering, both followed by thermal annealing. The structural properties of the absorber layers were studied by SEM, XRD and MiniSIMS. Sputtered absorber layers exhibit larger grain sizes than electrodeposited layers, but both types of film consist of randomly orientated crystallites. Electrodeposited layers appear to have a uniform composition with evidence of a MoSe2 layer at the back contact, whilst sputtered layers show no evidence for a MoSe2 layer. The external quantum efficiency spectrum of films and completed devices was measured, and the band gap and broadening parameters were obtained using electroreflectance spectroscopy. A device based on electrodeposited CuInSe2 achieved an AM 1.5 efficiency of 6.6%, whilst a device based on sputtered CuInSe2 had an efficiency of 8.3%. Impedance measurements were used to calculate doping densities of 2 × 1016 and 4 × 1015 cm?3 for the electrodeposited and sputtered devices, respectively.
U2 - 10.1088/0022-3727/41/8/085105
DO - 10.1088/0022-3727/41/8/085105
M3 - Article
SN - 0022-3727
SN - 1361-6463
VL - 41
SP - 085105
JO - Journal of Physics D: Applied Physics
JF - Journal of Physics D: Applied Physics
IS - 8
ER -