Chemolithotrophic biosynthesis of organic carbon associated with volcanic ash in the Mariana Trough, Pacific Ocean

Taisi Li, Jiwei Li*, Jack Longman, Zhe-Xuan Zhang, Yuangao Qu, Shun Chen, Shijie Bai, Shamik Dasgupta, Henchao Xu, Kaiwen Ta, Shuangquan Liu, Xiaotong Peng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
12 Downloads (Pure)


Volcanic ash is a major component of marine sediment, but its effect on the deep-sea carbon cycle remains enigmatic. Here, we analyzed mineralogical compositions and glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in submarine tuffs from the Mariana Trough, demonstrating a fraction of organic carbon associated with volcanic ash is produced in situ. This likely derives from chemolithotrophic communities supported by alteration of volcanic material. Tuff GDGTs are characterized by enrichment of branched GDGTs, as in chemolithotrophic communities. Scanning electron microscope, Raman spectrum and nano secondary ion mass spectrometry analysis demonstrates organic carbon exists around secondary heamatite veins in the altered mafic minerals, linking mineral alteration to chemolithotrophic biosynthesis. We estimate organic carbon production of between 0.7 − 3.7 × 1011 g if all the chemical energy produced by ash alteration was fully utilized by microorganisms. Therefore, the chemolithotrophic ecosystem maintained by ash alteration likely contributes considerably to organic carbon production in the seafloor.
Original languageEnglish
Article number80
Pages (from-to)1-10
Number of pages10
JournalCommunications Earth and Environment
Issue number1
Publication statusPublished - 17 Mar 2023

Cite this