Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity

The ISARIC4C Investigators, The COVID-19 Genomics UK (COG-UK) Consortium, Emma C. Thomson, Laura E. Rosen, James G. Shepherd, Roberto Spreafico, Ana da Silva Filipe, Jason A. Wojcechowskyj, Chris Davis, Luca Piccoli, David J. Pascall, Josh Dillen, Spyros Lytras, Nadine Czudnochowski, Rajiv Shah, Marcel Meury, Natasha Jesudason, Anna De Marco, Kathy Li, Jessica BassiAine O'Toole, Dora Pinto, Rachel M. Colquhoun, Katja Culap, Ben Jackson, Fabrizia Zatta, Andrew Rambaut, Stefano Jaconi, Vattipally B. Sreenu, Jay Nix, Ivy Zhang, Ruth F. Jarrett, William G. Glass, Martina Beltramello, Kyriaki Nomikou, Matteo Pizzuto, Lily Tong, Elisabetta Cameroni, Tristan I. Croll, Natasha Johnson, Julia Di Iulio, Arthur Wickenhagen, Alessandro Ceschi, Aoife M. Harbison, Daniel Mair, Paolo Ferrari, Katherine Smollett, Federica Sallusto, Stephen Carmichael, Christian Garzoni, Jenna Nichols, Massimo Galli, David L. Robertson*, Gyorgy Snell*, Matthew Bashton, Darren Smith, Andrew Nelson, Greg Young

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

437 Citations (Scopus)
251 Downloads (Pure)

Abstract

SARS-CoV-2 can mutate and evade immunity, with consequences for efficacy of emerging vaccines and antibody therapeutics. Here, we demonstrate that the immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is a highly variable region of S and provide epidemiological, clinical, and molecular characterization of a prevalent, sentinel RBM mutation, N439K. We demonstrate N439K S protein has enhanced binding affinity to the hACE2 receptor, and N439K viruses have similar in vitro replication fitness and cause infections with similar clinical outcomes as compared to wild type. We show the N439K mutation confers resistance against several neutralizing monoclonal antibodies, including one authorized for emergency use by the US Food and Drug Administration (FDA), and reduces the activity of some polyclonal sera from persons recovered from infection. Immune evasion mutations that maintain virulence and fitness such as N439K can emerge within SARS-CoV-2 S, highlighting the need for ongoing molecular surveillance to guide development and usage of vaccines and therapeutics. Epidemiological, clinical, molecular, and structural characterization of the N439K mutation in the SARS-CoV-2 spike receptor binding motif demonstrates that it results in similar viral fitness compared to wild-type while conferring resistance against some neutralizing monoclonal antibodies and reducing the activity of some polyclonal antibody responses.

Original languageEnglish
Pages (from-to)1171-1187.e20
JournalCell
Volume184
Issue number5
Early online date28 Jan 2021
DOIs
Publication statusPublished - 4 Mar 2021

Keywords

  • COVID-19
  • monoclonal antibody escape
  • mutation
  • N439K
  • protein structure
  • receptor binding motif
  • SARS-CoV-2
  • Spike
  • variant

Fingerprint

Dive into the research topics of 'Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity'. Together they form a unique fingerprint.

Cite this