Abstract
Several machine learning algorithms and feature subsets from a variety of particle and magnetic field instruments on-board the Cassini spacecraft were explored for their utility in classifying orbit segments as magnetosphere, magnetosheath or solar wind. Using a list of manually detected magnetopause and bow shock crossings from mission scientists, random forest (RF), support vector machine (SVM), logistic regression (LR) and recurrent neural network long short-term memory (RNN LSTM) classification algorithms were trained and tested. A detailed error analysis revealed a RNN LSTM model provided the best overall performance with a 93.1% accuracy on the unseen test set and MCC score of 0.88 when utilizing 60 min of magnetometer data (|B|, Bθ, Bϕ and BR) to predict the region at the final time step. RF models using a combination of magnetometer and particle data, spanning H+, He+, He++ and electrons at a single time step, provided a nearly equivalent performance with a test set accuracy of 91.4% and MCC score of 0.84. Derived boundary crossings from each model’s region predictions revealed that the RNN model was able to successfully detect 82.1% of labeled magnetopause crossings and 91.2% of labeled bow shock crossings, while the RF model using magnetometer and particle data detected 82.4 and 74.3%, respectively.
Original language | English |
---|---|
Article number | 875985 |
Number of pages | 20 |
Journal | Frontiers in Astronomy and Space Sciences |
Volume | 9 |
DOIs | |
Publication status | Published - 20 May 2022 |
Externally published | Yes |
Keywords
- boundary crossings
- Cassini-Huygens
- machine learning
- magnetosphere
- random forest
- recurrent neural network (RNN) long short-term memory (LSTM)
- Saturn