TY - JOUR
T1 - Climate-informed stochastic hydrological modeling
T2 - Incorporating decadal-scale variability using paleo data
AU - Henley, Benjamin J.
AU - Thyer, Mark A.
AU - Kuczera, George
AU - Franks, Stewart
PY - 2011/11/18
Y1 - 2011/11/18
N2 - A hierarchical framework for incorporating modes of climate variability into stochastic simulations of hydrological data is developed, termed the climate-informed multi-time scale stochastic (CIMSS) framework. A case study on two catchments in eastern Australia illustrates this framework. To develop an identifiable model characterizing long-term variability for the first level of the hierarchy, paleoclimate proxies, and instrumental indices describing the Interdecadal Pacific Oscillation (IPO) and the Pacific Decadal Oscillation (PDO) are analyzed. A new paleo IPO-PDO time series dating back 440 yr is produced, combining seven IPO-PDO paleo sources using an objective smoothing procedure to fit low-pass filters to individual records. The paleo data analysis indicates that wet/dry IPO-PDO states have a broad range of run lengths, with 90% between 3 and 33 yr and a mean of 15 yr. The Markov chain model, previously used to simulate oscillating wet/dry climate states, is found to underestimate the probability of wet/dry periods >5 yr, and is rejected in favor of a gamma distribution for simulating the run lengths of the wet/dry IPO-PDO states. For the second level of the hierarchy, a seasonal rainfall model is conditioned on the simulated IPO-PDO state. The model is able to replicate observed statistics such as seasonal and multiyear accumulated rainfall distributions and interannual autocorrelations. Mean seasonal rainfall in the IPO-PDO dry states is found to be 15%-28% lower than the wet state at the case study sites. In comparison, an annual lag-one autoregressive model is unable to adequately capture the observed rainfall distribution within separate IPO-PDO states.
AB - A hierarchical framework for incorporating modes of climate variability into stochastic simulations of hydrological data is developed, termed the climate-informed multi-time scale stochastic (CIMSS) framework. A case study on two catchments in eastern Australia illustrates this framework. To develop an identifiable model characterizing long-term variability for the first level of the hierarchy, paleoclimate proxies, and instrumental indices describing the Interdecadal Pacific Oscillation (IPO) and the Pacific Decadal Oscillation (PDO) are analyzed. A new paleo IPO-PDO time series dating back 440 yr is produced, combining seven IPO-PDO paleo sources using an objective smoothing procedure to fit low-pass filters to individual records. The paleo data analysis indicates that wet/dry IPO-PDO states have a broad range of run lengths, with 90% between 3 and 33 yr and a mean of 15 yr. The Markov chain model, previously used to simulate oscillating wet/dry climate states, is found to underestimate the probability of wet/dry periods >5 yr, and is rejected in favor of a gamma distribution for simulating the run lengths of the wet/dry IPO-PDO states. For the second level of the hierarchy, a seasonal rainfall model is conditioned on the simulated IPO-PDO state. The model is able to replicate observed statistics such as seasonal and multiyear accumulated rainfall distributions and interannual autocorrelations. Mean seasonal rainfall in the IPO-PDO dry states is found to be 15%-28% lower than the wet state at the case study sites. In comparison, an annual lag-one autoregressive model is unable to adequately capture the observed rainfall distribution within separate IPO-PDO states.
U2 - 10.1029/2010WR010034
DO - 10.1029/2010WR010034
M3 - Article
AN - SCOPUS:81155151427
SN - 0043-1397
VL - 47
JO - Water Resources Research
JF - Water Resources Research
IS - 11
M1 - W11509
ER -