TY - JOUR
T1 - CoFePS Quaternary Alloy Sub-nanometric-sheets by Synchronously Phospho-sulfurizing CoFe-bimetallene for Boosting Oxygen Evolution Reaction
AU - Zhao, Long
AU - Wen, Ming
AU - Guo, Yibo
AU - Wu, Qingsheng
AU - Zhu, Quanjing
AU - Fu, Yongqing (Richard)
PY - 2023/8/7
Y1 - 2023/8/7
N2 - Due to the sluggish kinetics of oxygen evolution reaction (OER), electrocatalysts are urgently needed to simultaneously achieve increased activity, enhanced stability, and reduced cost. Herein, CoFePS quaternary alloy sub-nanometric sheet is synthesized via synchronously phosphor-sulfurizing CoFe-bimetallene. Heteroatomization results in increasing conductivity, enhancing interactions with electrolyte, and improving chemical structural stability to exhibit a current density of 10 mA cm−2 at 211 mV and a large current of 1053 mA cm−2 at 570 mV. Density functional theory calculations reveal that the adjustment of Fermi levels of adjacent metal atoms reduces reaction energy barrier and accelerates electron transfer, resulting in a Tafel slope of 14 mV dec−1. In situ Raman monitors the formation of phosphor-sulfate shell oxidized surface as active sites improved the OER stability of CoFePS, with a retention rate of 99.7% at 10 mA cm−2 for 78 h. This study provides a promising strategy for the synthesis of multicomponent alloy sub-nanometric sheet as good electrocatalyst candidates for OER.
AB - Due to the sluggish kinetics of oxygen evolution reaction (OER), electrocatalysts are urgently needed to simultaneously achieve increased activity, enhanced stability, and reduced cost. Herein, CoFePS quaternary alloy sub-nanometric sheet is synthesized via synchronously phosphor-sulfurizing CoFe-bimetallene. Heteroatomization results in increasing conductivity, enhancing interactions with electrolyte, and improving chemical structural stability to exhibit a current density of 10 mA cm−2 at 211 mV and a large current of 1053 mA cm−2 at 570 mV. Density functional theory calculations reveal that the adjustment of Fermi levels of adjacent metal atoms reduces reaction energy barrier and accelerates electron transfer, resulting in a Tafel slope of 14 mV dec−1. In situ Raman monitors the formation of phosphor-sulfate shell oxidized surface as active sites improved the OER stability of CoFePS, with a retention rate of 99.7% at 10 mA cm−2 for 78 h. This study provides a promising strategy for the synthesis of multicomponent alloy sub-nanometric sheet as good electrocatalyst candidates for OER.
U2 - 10.1002/adfm.202308422
DO - 10.1002/adfm.202308422
M3 - Article
JO - Advanced Functional Materials
JF - Advanced Functional Materials
SN - 1616-301X
M1 - 2308422
ER -