Collective and cooperative dynamics in transition domains of amorphous polymers with multi-shape memory effect

Xiaodong Wang, Haibao Lu, Richard (Yong Qing) Fu, Jinsong Leng, Shanyi Du

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
17 Downloads (Pure)

Abstract

Multi-shape memory effect (multi-SME) in amorphous shape memory polymers (SMPs) linked with collective and cooperative rearrangements and accommodations of monomeric segments, thus leading to generation of complex thermodynamic modes. In this study, an extended domain size model is initially formulated to describe various temperature-dependent relaxation behaviors and domain transitions in amorphous SMPs. According to the Adam-Gibbs theory, a cooperative model is employed to identify the principle role of domain size in the collective dynamics of multi-SME in amorphous SMPs. The phase transition theory is then combined with multi-branch Kelvin model to describe the collective and cooperative relaxation behaviors of the SMPs with multiple transition domains. It is shown that the proposed model is able to characterize the thermomechanical transitions and multiple shape recovery processes. Finally, the model is applied to predict shape recovery behavior of SMPs with triple- and quadruple-SME, respectively, and the theoretical results are well validated by the experimental ones.
Original languageEnglish
Article number095301
JournalJournal of Physics D: Applied Physics
Volume53
Issue number9
Early online date17 Dec 2019
DOIs
Publication statusPublished - 27 Feb 2020

Fingerprint

Dive into the research topics of 'Collective and cooperative dynamics in transition domains of amorphous polymers with multi-shape memory effect'. Together they form a unique fingerprint.

Cite this