Comparative Analysis of a Deep Convolutional Neural Network for Source Camera Identification

Farah Ahmed*, Fouad Khelifi, Ashref Lawgaly, Ahmed Bouridane

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

23 Citations (Scopus)

Abstract

In image forensics, there is widespread growing investigations for Source Camera Identification (SCI) to identify the legitimate source of an image by using different approaches including filtering-based techniques and deep neural networks. Therefore, the aim of this paper is to shed light on the application of source camera identification in digital forensic science via a comparative analysis of state-of-the art filtered-based technique and deep learning convolutional neural networks-based (CNN). To this end, the basic sensor pattern noise-based estimation technique using the Wiener filter in the wavelet domain is considered as well as deep learning CNN model in order to assess the effectiveness of SCI. Different experiments have been carried out on our database of images taken from eleven different cameras using the same set of training and test images with dimensions 128 × 128 and 256 × 256 for both approaches. From the results of the overall false positive rates, false negative rates and overall accuracy, this paper suggests that filtered-based PRNU approach for SCI outperforms the deep learning CNN approach in digital image forensics when limited number of images are available in forensic investigations.

Original languageEnglish
Title of host publicationProceedings of 12th International Conference on Global Security, Safety and Sustainability, ICGS3 2019
Place of PublicationPiscataway, NJ
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1
Number of pages6
ISBN (Electronic)9781538670019
DOIs
Publication statusPublished - 16 Jan 2019
Event12th International Conference on Global Security, Safety and Sustainability, ICGS3 2019 - London, United Kingdom
Duration: 16 Jan 201918 Jan 2019

Conference

Conference12th International Conference on Global Security, Safety and Sustainability, ICGS3 2019
Country/TerritoryUnited Kingdom
CityLondon
Period16/01/1918/01/19

Keywords

  • Convolutional Neural Network
  • Deep Learning
  • Digital Image Forensics
  • Filtered-based PRNU
  • Source Camera Identification

Fingerprint

Dive into the research topics of 'Comparative Analysis of a Deep Convolutional Neural Network for Source Camera Identification'. Together they form a unique fingerprint.

Cite this