TY - JOUR
T1 - Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 General Circulation Models
AU - Haywood, Alan
AU - Chandler, Mark
AU - Valdes, Paul
AU - Salzmann, Ulrich
AU - Lunt, Daniel
AU - Dowsett, Harry
PY - 2009/4
Y1 - 2009/4
N2 - The mid-Pliocene warm period (ca. 3 to 3.3 million years ago) has become an important interval of time for palaeoclimate modelling exercises, with a large number of studies published during the last decade. However, there has been no attempt to assess the degree of model dependency of the results obtained. Here we present an initial comparison of mid-Pliocene climatologies produced by the Goddard Institute for Space Studies and Hadley Centre for Climate Prediction and Research atmosphere-only General Circulation Models (GCMAM3 and HadAM3). Whilst both models are consistent in the simulation of broad-scale differences in mid-Pliocene surface air temperature and total precipitation rates, significant variation is noted on regional and local scales. There are also significant differences in the model predictions of total cloud cover. A terrestrial data/model comparison, facilitated by the BIOME 4 model and a new data set of Piacenzian Stage land cover [Salzmann, U., Haywood, A.M., Lunt, D.J., Valdes, P.J., Hill, D.J., (2008). A new global biome reconstruction and data model comparison for the Middle Pliocene. Global Ecology and Biogeography 17, 432-447, doi:10.1111/j.1466-8238.2007.00381.x] and combined with the use of Kappa statistics, indicates that HadAM3-based biome predictions provide a closer fit to proxy data in the mid to high-latitudes. However, GCMAM3-based biomes in the tropics provide the closest fit to proxy data.
AB - The mid-Pliocene warm period (ca. 3 to 3.3 million years ago) has become an important interval of time for palaeoclimate modelling exercises, with a large number of studies published during the last decade. However, there has been no attempt to assess the degree of model dependency of the results obtained. Here we present an initial comparison of mid-Pliocene climatologies produced by the Goddard Institute for Space Studies and Hadley Centre for Climate Prediction and Research atmosphere-only General Circulation Models (GCMAM3 and HadAM3). Whilst both models are consistent in the simulation of broad-scale differences in mid-Pliocene surface air temperature and total precipitation rates, significant variation is noted on regional and local scales. There are also significant differences in the model predictions of total cloud cover. A terrestrial data/model comparison, facilitated by the BIOME 4 model and a new data set of Piacenzian Stage land cover [Salzmann, U., Haywood, A.M., Lunt, D.J., Valdes, P.J., Hill, D.J., (2008). A new global biome reconstruction and data model comparison for the Middle Pliocene. Global Ecology and Biogeography 17, 432-447, doi:10.1111/j.1466-8238.2007.00381.x] and combined with the use of Kappa statistics, indicates that HadAM3-based biome predictions provide a closer fit to proxy data in the mid to high-latitudes. However, GCMAM3-based biomes in the tropics provide the closest fit to proxy data.
KW - Pliocene
KW - GCM
KW - intercomparison
KW - BIOME 4
KW - PMIP
KW - Plio-MIP
U2 - 10.1016/j.gloplacha.2008.12.014
DO - 10.1016/j.gloplacha.2008.12.014
M3 - Article
SN - 0921-8181
VL - 66
SP - 208
EP - 224
JO - Global and Planetary Change
JF - Global and Planetary Change
IS - 3-4
ER -