Complete integrability of information processing by biochemical reactions

Elena Agliari, Adriano Barra, Lorenzo Dello Schiavo, Antonio Moro

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)
5 Downloads (Pure)

Abstract

Statistical mechanics provides an effective framework to investigate information processing in biochemical reactions. Within such framework far-reaching analogies are established among (anti-)cooperative collective behaviors in chemical kinetics, (anti-)ferromagnetic spin models in statistical mechanics and operational amplifiers/flip-flops in cybernetics. The underlying modeling -- based on spin systems -- has been proved to be accurate for a wide class of systems matching classical (e.g. Michaelis--Menten, Hill, Adair) scenarios in the infinite-size approximation. However, the current research in biochemical information processing has been focusing on systems involving a relatively small number of units, where this approximation is no longer valid. Here we show that the whole statistical mechanical description of reaction kinetics can be re-formulated via a mechanical analogy -- based on completely integrable hydrodynamic-type systems of PDEs -- which provides explicit finite-size solutions, matching recently investigated phenomena (e.g. noise-induced cooperativity, stochastic bi-stability, quorum sensing). The resulting picture, successfully tested against a broad spectrum of data, constitutes a neat rationale for a numerically effective and theoretically consistent description of collective behaviors in biochemical reactions.
Original languageEnglish
Pages (from-to)36314
JournalScientific Reports
Volume6
Early online date4 Nov 2016
DOIs
Publication statusE-pub ahead of print - 4 Nov 2016

Fingerprint

Dive into the research topics of 'Complete integrability of information processing by biochemical reactions'. Together they form a unique fingerprint.

Cite this