Conformally Anodizing Hierarchical Structure in a Deformed Tube towards Energy-saving Liquid Transportation

Wei Li, Honghao Zhou, Kaiqi Zhao, Jian Jin, Xue Chen, Muhammad Wakil Shahzad, Yinzhu Jiang, Omar K. Matar*, Sheng Dai*, Ben Bin Xu*, Lidong Sun*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The creation of drag-reducing surfaces in deformed tubes is of vital importance to thermal management, energy, and environmental applications. However, it remains a great challenge to tailor the surface structure and wettability inside the deformed tubes of slim and complicated feature. Here, we describe an electrochemical anodization strategy to achieve uniform and superhydrophobic coating of TiO2 nanotube arrays throughout the inner surface in deformed/bend titanium tubes. Guided by a hybrid carbon fibre cathode, conformal electric field can be generated to adaptatively fit the complex geometries in the deformed tube, where the structural design with rigid insulating beads can self-stabilize the hybrid cathode at the coaxial position of the tube with the electrolyte flow. As a result, we obtain a superhydrophobic coating with a water contact angle of 157 and contact angle hysteresis of 10. Substantial drag reduction can be realised with an overall reduction up to 25.8 % for the anodized U-shaped tube. Furthermore, we demonstrate to spatially coat tubes with complex geometries, to achieve energy-saving liquid transportation. This facile coating strategy has great implications in liquid transport processes with the user-friendly approach to engineer surface regardless of the deformation of tube/pipe.
Original languageEnglish
JournalChemical Engineering Journal
Publication statusAccepted/In press - 17 Nov 2021

Fingerprint

Dive into the research topics of 'Conformally Anodizing Hierarchical Structure in a Deformed Tube towards Energy-saving Liquid Transportation'. Together they form a unique fingerprint.

Cite this