Control of arc suppression devices in compensated power distribution systems using an integral sliding mode controller for mitigating powerline bushfires

Mostafa Barzegar-Kalashani, Md Apel Mahmud*, Md Abdul Barik, Amanullah Maung Than Oo

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

An integral sliding model controller (I-SMC) is proposed in the work for arc suppression devices (ASDs) in resonant grounded power distribution systems which generally experience single line-to-ground faults and arcs from such faults are responsible for power line bushfires in remote areas.The proposed I-SMC is designed for the residual current compensation (RCC) inverter that is used with ADSs and the current is injected in a way that the risk of powerline bushfires are completely eliminated by reducing the fault current. In this work, a T-type inverter is employed and the control law is derived by considering the model uncertainties while the reference value of the current injected by the RCC inverter is calculated based on the fundamental analysis of ASDs. The sliding surface for the switching control input is derived in such a way that the system becomes stable. Finally, simulation studies are carried out to demonstrate the performance of the proposed scheme in terms of the desired tracking of the fault current and phase to neutral voltage with different fault impedances. Furthermore, the performance is compared with traditional proportional-integral (PI) controller in the time-domain to demonstrate its high performance and robustness.

Original languageEnglish
Article number107481
Number of pages9
JournalInternational Journal of Electrical Power and Energy Systems
Volume134
Early online date12 Aug 2021
DOIs
Publication statusE-pub ahead of print - 12 Aug 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Control of arc suppression devices in compensated power distribution systems using an integral sliding mode controller for mitigating powerline bushfires'. Together they form a unique fingerprint.

Cite this