TY - JOUR
T1 - Controlled drop emission by wetting properties in driven liquid filaments
AU - Ledesma-Aguilar, Rodrigo
AU - Nistal, Raul
AU - Hernández-Machado, Aurora
AU - Pagonabarraga, Ignacio
PY - 2011
Y1 - 2011
N2 - The controlled formation of micrometre-sized drops is of great importance to many technological applications1, 2, 3, 4, 5. Here we present a wetting-based destabilization mechanism of forced microfilaments on either hydrophilic or hydrophobic stripes that leads to the periodic emission of droplets. The drop emission mechanism is triggered above the maximum critical forcing at which wetting, capillarity, viscous friction and gravity can balance to sustain a stable driven contact line. The corresponding critical filament velocity is predicted as a function of the static wetting angle, which can be tuned through the substrate behaviour, and shows a strong dependence on the filament size. This sensitivity explains the qualitative difference in the critical velocity between hydrophilic and hydrophobic stripes, and accounts for previous experimental results of splashing solids6. We demonstrate that this mechanism can be used to control independently the drop size and emission period, opening the possibility of highly monodisperse and flexible drop production techniques in open microfluidic geometries.
AB - The controlled formation of micrometre-sized drops is of great importance to many technological applications1, 2, 3, 4, 5. Here we present a wetting-based destabilization mechanism of forced microfilaments on either hydrophilic or hydrophobic stripes that leads to the periodic emission of droplets. The drop emission mechanism is triggered above the maximum critical forcing at which wetting, capillarity, viscous friction and gravity can balance to sustain a stable driven contact line. The corresponding critical filament velocity is predicted as a function of the static wetting angle, which can be tuned through the substrate behaviour, and shows a strong dependence on the filament size. This sensitivity explains the qualitative difference in the critical velocity between hydrophilic and hydrophobic stripes, and accounts for previous experimental results of splashing solids6. We demonstrate that this mechanism can be used to control independently the drop size and emission period, opening the possibility of highly monodisperse and flexible drop production techniques in open microfluidic geometries.
U2 - 10.1038/nmat2998
DO - 10.1038/nmat2998
M3 - Article
SN - 1476-1122
VL - 10
SP - 367
EP - 371
JO - Nature Materials
JF - Nature Materials
IS - 5
ER -