Corticospinal excitability during shortening and lengthening actions with incremental torque output

Jakob Škarabot, Jamie Tallent, Stuart Goodall, Rade Durbaba, Glyn Howatson

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
2 Downloads (Pure)

Abstract

The modulation of motor evoked potentials (MEPs), an index of corticospinal excitability, has been shown to increase during isometric contractions with incremental torque output in accordance with the contribution between motor unit recruitment and firing rate of the muscle to increases in required torque output. However, motor unit strategy of the muscle might not be the only factor influencing this behaviour since differences in pre- and postsynaptic control have been reported between lengthening and shortening or isometric contractions. In thirty healthy adults, MEPs were elicited in tibialis anterior during shortening and lengthening contractions at 15, 25, 50 and 80% contraction type specific maximal voluntary contraction torque. Background electromyographic activity increased progressively with greater torque output (p<0.001), but was similar between contraction types (p=0.162). When normalised to the maximal muscle response, MEPs were greater during shortening compared to lengthening contractions (p=0.004) and increased step-wise with increased 48 contraction intensities (p=0.001). These data show an increase in corticospinal excitability with torque output from lower to higher contraction intensities, suggesting greater contribution of motor unit recruitment to increased nervous system gain in the tibialis anterior. Despite differences in corticospinal control of shortening and lengthening contractions, the data suggest the corticospinal responses to increases in torque output are not dependent on contraction type since corticospinal excitability increased similarly during shortening and lengthening actions. Thus, it is likely that the relationship between motor unit recruitment and firing rate of the muscle is the main determinant of corticospinal output with variations in nervous system gain.
Original languageEnglish
Pages (from-to)1586-1592
JournalExperimental Physiology
Volume103
Issue number12
Early online date16 Oct 2018
DOIs
Publication statusPublished - 1 Dec 2018

Fingerprint

Dive into the research topics of 'Corticospinal excitability during shortening and lengthening actions with incremental torque output'. Together they form a unique fingerprint.

Cite this