TY - JOUR
T1 - Corticospinal excitability of tibialis anterior and soleus differs during passive ankle movement
AU - Škarabot, Jakob
AU - Ansdell, Paul
AU - Brownstein, Callum
AU - Hicks, Kirsty
AU - Howatson, Glyn
AU - Goodall, Stuart
AU - Durbaba, Rade
PY - 2019/9/1
Y1 - 2019/9/1
N2 - The purpose of this study was to assess corticospinal excitability of soleus (SOL) and tibialis anterior (TA) at a segmental level during passive ankle movement. Four experimental components were performed to assess the effects of passive ankle movement and muscle length on corticospinal excitability (MEP/Mmax) at different muscle lengths, subcortical excitability at the level of lumbar spinal segments (LEP/Mmax), intracortical inhibition (SICI) and facilitation (ICF), and H-reflex in SOL and TA. Additionally, the degree of fascicle length changes between SOL and TA was assessed in a subpopulation during passive ankle movement. Fascicles shortened and lengthened with joint movement during passive shortening and lengthening of SOL and TA to a similar degree (p<0.001). Resting motor threshold was greater in SOL compared to TA (p≤0.014). MEP/Mmax was facilitated in TA during passive shortening relative to the static position (p≤0.023) and passive lengthening (p≤0.001), but remained similar during passive ankle movement in SOL (p≥0.497), regardless of muscle length at the point of stimulus (p=0.922). LEP/Mmax (SOL: p=0.075, TA: p=0.071), SICI (SOL: p=0.427, TA: p=0.540) and ICF (SOL: p=0.177, TA: p=0.777) remained similar during passive ankle movement. H-reflex was not different across conditions in TA (p=0.258), but was reduced during passive lengthening compared to shortening in SOL (p=0.048). These results suggest a differential modulation of corticospinal excitability between plantar and dorsiflexors during passive movement. The corticospinal behaviour observed might be mediated by an increase in corticospinal drive as a result of reduced afferent input during muscle shortening and appears to be flexor-biased.
AB - The purpose of this study was to assess corticospinal excitability of soleus (SOL) and tibialis anterior (TA) at a segmental level during passive ankle movement. Four experimental components were performed to assess the effects of passive ankle movement and muscle length on corticospinal excitability (MEP/Mmax) at different muscle lengths, subcortical excitability at the level of lumbar spinal segments (LEP/Mmax), intracortical inhibition (SICI) and facilitation (ICF), and H-reflex in SOL and TA. Additionally, the degree of fascicle length changes between SOL and TA was assessed in a subpopulation during passive ankle movement. Fascicles shortened and lengthened with joint movement during passive shortening and lengthening of SOL and TA to a similar degree (p<0.001). Resting motor threshold was greater in SOL compared to TA (p≤0.014). MEP/Mmax was facilitated in TA during passive shortening relative to the static position (p≤0.023) and passive lengthening (p≤0.001), but remained similar during passive ankle movement in SOL (p≥0.497), regardless of muscle length at the point of stimulus (p=0.922). LEP/Mmax (SOL: p=0.075, TA: p=0.071), SICI (SOL: p=0.427, TA: p=0.540) and ICF (SOL: p=0.177, TA: p=0.777) remained similar during passive ankle movement. H-reflex was not different across conditions in TA (p=0.258), but was reduced during passive lengthening compared to shortening in SOL (p=0.048). These results suggest a differential modulation of corticospinal excitability between plantar and dorsiflexors during passive movement. The corticospinal behaviour observed might be mediated by an increase in corticospinal drive as a result of reduced afferent input during muscle shortening and appears to be flexor-biased.
KW - Ia afferent
KW - fascicle length
KW - H-reflex
KW - transcranial magnetic stimulation
UR - http://www.scopus.com/inward/record.url?scp=85068226309&partnerID=8YFLogxK
U2 - 10.1007/s00221-019-05590-3
DO - 10.1007/s00221-019-05590-3
M3 - Article
C2 - 31243484
SN - 0014-4819
VL - 237
SP - 2239
EP - 2254
JO - Experimental Brain Research
JF - Experimental Brain Research
IS - 9
ER -