TY - JOUR
T1 - Data transfer between digital models of built assets and their operation & maintenance systems
AU - Rogage, Kay
AU - Greenwood, David
PY - 2020/10/13
Y1 - 2020/10/13
N2 - The operation and maintenance of built assets is crucial for optimising their whole life cost and efficiency. Historically, however, there has been a general failure in the transfer information between the design-and-construct (D&C) and operate-and-maintain (O&M) phases of the asset lifecycle. The recent steady uptake of digital technologies, such as Building Information Modelling (BIM) in the D&C phase has been accompanied by an expectation that this would enable better transfer of information to those responsible for O&M. Progress has been slow, with practitioners being unsure as to how to incorporate BIM into their working practices. Three types of challenge are identified, related to communication, experience and technology. In examining the last aspect, it appears that a major problem has been that of interoperability between building information models and the many computer-aided facilities management (CAFM) systems in use. The successful and automatic transfer of information from a building model to an FM tool is, in theory, achievable through the medium of the Industry Foundation Classes (IFC) schema. However, this relies upon the authoring of the model in terms of how well its structure permits the identification of relevant objects, their relationships and attributes. The testing of over 100 anonymised building models revealed that very few did; prohibiting their straightforward mapping to the maintenance database we had selected for the test. An alternative, hybrid approach was developed using an open-source software toolkit to identify objects by their geometry as well as their classification, thus enabling their automatic transfer. In some cases, manual transfer proved necessary. The implications are that while these problems can be overcome on a case-by-case basis, interoperability between D&C and O&M systems will not become standard until it is accommodated by appropriate and informed authoring of building models.
AB - The operation and maintenance of built assets is crucial for optimising their whole life cost and efficiency. Historically, however, there has been a general failure in the transfer information between the design-and-construct (D&C) and operate-and-maintain (O&M) phases of the asset lifecycle. The recent steady uptake of digital technologies, such as Building Information Modelling (BIM) in the D&C phase has been accompanied by an expectation that this would enable better transfer of information to those responsible for O&M. Progress has been slow, with practitioners being unsure as to how to incorporate BIM into their working practices. Three types of challenge are identified, related to communication, experience and technology. In examining the last aspect, it appears that a major problem has been that of interoperability between building information models and the many computer-aided facilities management (CAFM) systems in use. The successful and automatic transfer of information from a building model to an FM tool is, in theory, achievable through the medium of the Industry Foundation Classes (IFC) schema. However, this relies upon the authoring of the model in terms of how well its structure permits the identification of relevant objects, their relationships and attributes. The testing of over 100 anonymised building models revealed that very few did; prohibiting their straightforward mapping to the maintenance database we had selected for the test. An alternative, hybrid approach was developed using an open-source software toolkit to identify objects by their geometry as well as their classification, thus enabling their automatic transfer. In some cases, manual transfer proved necessary. The implications are that while these problems can be overcome on a case-by-case basis, interoperability between D&C and O&M systems will not become standard until it is accommodated by appropriate and informed authoring of building models.
U2 - 10.36680/j.itcon.2020.027
DO - 10.36680/j.itcon.2020.027
M3 - Article
SN - 1400-6529
VL - 25
SP - 469
EP - 481
JO - Journal of Information Technology in Construction
JF - Journal of Information Technology in Construction
ER -