TY - JOUR
T1 - Decolorization and detoxification of Direct Blue 2B by indigenous bacterial consortium
AU - Cao, Jiling
AU - Sanganyado, Edmond
AU - Liu, Wenhua
AU - Zhang, Wei
AU - Liu, Ying
PY - 2019/7/15
Y1 - 2019/7/15
N2 - Azo dyes are widely used in the textile industry despite being poorly biodegradable and highly toxic. Hence, azo dyes need to be removed from effluent prior to environmental discharge. Microbial communities are efficient for the degradation and mineralization of azo dyes. However, little is known about the functional microbial communities responsible for the degradation process. In this study, a novel indigenous bacteria consortium was developed for characterizing the functional microbial communities involved in the degradation of a sulfonated azo dye, Direct Blue 2B (DB2) in a simple batch reactor. The optimal temperature, pH, and salinity for the decolorization process were 38.70 °C, pH 7.57, and 20.10 g L−1 NaCl, respectively. The effect of the operating conditions on microbial community structure were determined using high-throughput Illumina HiSeq sequencing. Gammaproteobacteria, Betaproteobacteria, and Bacilli were dominant under most of the operating conditions. At pH above 8 and NaCl concentration above 30 g L−1, Firmicutes relative abundance did not significantly change suggesting tolerance towards alkaline and hypersaline environments. Tritium aestivum and Glycine max seed germination following exposure to YHK treated DB2 solution was above 80% compared to 50% in untreated DB2 solution. The YHK consortium decolorized dyes structurally different from DB2 such as trimethyl phenyl and direct dyes. The results of this study offer valuable data on improving optimization of dye biodegradation processes and the capability of YHK in in situ bioremediation.
AB - Azo dyes are widely used in the textile industry despite being poorly biodegradable and highly toxic. Hence, azo dyes need to be removed from effluent prior to environmental discharge. Microbial communities are efficient for the degradation and mineralization of azo dyes. However, little is known about the functional microbial communities responsible for the degradation process. In this study, a novel indigenous bacteria consortium was developed for characterizing the functional microbial communities involved in the degradation of a sulfonated azo dye, Direct Blue 2B (DB2) in a simple batch reactor. The optimal temperature, pH, and salinity for the decolorization process were 38.70 °C, pH 7.57, and 20.10 g L−1 NaCl, respectively. The effect of the operating conditions on microbial community structure were determined using high-throughput Illumina HiSeq sequencing. Gammaproteobacteria, Betaproteobacteria, and Bacilli were dominant under most of the operating conditions. At pH above 8 and NaCl concentration above 30 g L−1, Firmicutes relative abundance did not significantly change suggesting tolerance towards alkaline and hypersaline environments. Tritium aestivum and Glycine max seed germination following exposure to YHK treated DB2 solution was above 80% compared to 50% in untreated DB2 solution. The YHK consortium decolorized dyes structurally different from DB2 such as trimethyl phenyl and direct dyes. The results of this study offer valuable data on improving optimization of dye biodegradation processes and the capability of YHK in in situ bioremediation.
KW - Functional microbial community
KW - Microbial diversity
KW - High-throughput sequencing
KW - Sulfonated azo dye
KW - Dye decolorization
U2 - 10.1016/j.jenvman.2019.04.067
DO - 10.1016/j.jenvman.2019.04.067
M3 - Article
VL - 242
SP - 229
EP - 237
JO - Journal of Environmental Management
JF - Journal of Environmental Management
SN - 0301-4797
ER -