Abstract
Recent reports using particle image velocimetry and cone-and-plate rheometers have suggested that a simple Newtonian liquid flowing across a superhydrophobic surface demonstrates a finite slip length. Slippage on a superhydrophobic surface indicates that the combination of topography and hydrophobicity may have consequences for the coupling at the solid-liquid interface observed using the high-frequency shear-mode oscillation of a quartz crystal microbalance (QCM). In this work, we report on the response of a 5 MHz QCM possessing a superhydrophobic surface to immersion in water-glycerol mixtures. QCM surfaces were prepared with a layer of SU-8 photoresist and lithographically patterned to produce square arrays of 5 mu m diameter circular cross-section posts spaced 10 mu m center-to-center and with heights of 5,10, 15, and 18 mu m. Non-pattemed layers were also created for comparison, and both non-hydrophobized and chemically hydrophobized surfaces were investigated. Contact angle measurements confirmed that the hydrophobized post surfaces were superhydrophobic. QCM measurements in water before and after applying pressure to force a Cassie-Baxter (non-penetrating) to Wenzel (penetrating) conversion of state showed a larger frequency decrease and higher dissipation in the Wenzel state. QCM resonance spectra were fitted to a Butterworth-van Dyke model for the full range of water-glycerol mixtures from pure water to (nominally) pure glycerol, thus providing data on both energy storage and dissipation. The data obtained for the post surfaces show a variety of types of behavior, indicating the importance of the surface chemistry in determining the response of the quartz crystal resonance, particularly on topographically structured surfaces; data for hydrophobized post surfaces imply a decoupling of the surface oscillation from the mixtures. In the case of the 15 mu m tall hydrophobized post surfaces, crystal resonance spectra become narrower as the viscosity -density product increases, which is contrary to the usual behavior. In the most extreme case of the 18 mu m tall hydrophobized post surfaces, both the frequency decrease and bandwidth increase of the resonance spectra are significantly lower than that predicted by the Kanazawa and Gordon model, thus implying a decoupling of the oscillating surface from the liquid, which can be interpreted as interfacial slip
Original language | English |
---|---|
Pages (from-to) | 9823-9830 |
Journal | Langmuir |
Volume | 23 |
Issue number | 19 |
DOIs | |
Publication status | Published - 11 Sept 2007 |
Keywords
- slip
- Contact Angle
- wetting
- acoustic wave
- QCM